Multi-sensor multi-target tracking techniques for Space Situational Awareness

Daniel Clark

Reader, School of Engineering and Physical Sciences Heriot-Watt University

Space

China's Tiangong-1 space station 'out of control' and will crash to Earth

Chinese authorities confirm the eight-tonne 'Heavenly Palace' lab will re-enter the atmosphere sometime in 2017 with some parts likely to hit Earth

China's Long March 2-F rocket, which took the Tiangong-1 space module into space. Photograph: STR/AFP/Getty Images

Multi-sensor multi-target tracking techniques for Space Situational Awareness

Motivation: Methods for tracking space debris are essential to prevent damage to expensive space-related infrastructure and to determine cause.

Examples of recent events:

- ✤ 2009 Russian Kosmos 2251/US Iridium 33 collision.
- ✤ 2007 Chinese anti-satellite test.

https://en.wikipedia.org/wiki/2007_Ch inese_anti-satellite_missile_test

Objective: Develop methods for estimation of populations of objects in orbit from sensor data.

Multi-sensor multi-target tracking techniques for Space Situational Awareness

Topics:

- 1. Tracking trajectories of individual objects
- 2. Multi-target tracking
- 3. Joint sensor motion, target tracking, and classification

TARGET TRACKING: PREDICTION

Markov transition density

$$p_{k+1|k}(x_{k+1}|z_{1:k}) = \mathbf{\hat{O}} f_{k+1|k}(x_{k+1}|x)p_k(x|z_{1:k})dx$$

TARGET TRACKING: UPDATE

Conditional likelihood

$$p_{k+1}(x_{k+1} | z_{1:k}) = \frac{g_{k+1}(z_{k+1} | x_{k+1})p_{k+1|k}(x_{k+1} | z_{1:k})}{\grave{O}}g_{k+1}(z_{k+1} | x)p_{k+1|k}(x | z_{1:k})dx}$$

TARGET TRACKING: ORBITING OBJECTS

TRACKING A SATELLITE FROM LASER RANGING

TRACKING FROM WEATHER RADAR

Chilbolton Advanced Meteorological Radar

- Fully steerable meteorological 3Ghz radar with a Doppler capability
- Modified in 2010 to carry out Space Situational Awareness (SSA) operations
- Low Earth Orbit (LEO) object tracking

Image Credit: http://www.metoffice.gov.uk/

MULTI-OBJECT FILTERING

multi-object Bayes filter

TRACKING MULTIPLE ORBITING OBJECTS

Multi-object modelling SSA context: eg. debris modelling

A **spatial point process** is a probabilistic representation of a random set of objects For example:

space)

 2-dimensional positions of objects in an image from a sensor (i.e. an observation

- 3-dimensional positions and velocities of objects in some real-world environment (i.e. a state space).

Point processes

Number of objects	Cardinality probability	Joint spatial density
0	$\rho(0)$	-
1	$\rho(1)$	$p_1(x_1)$
2	$\rho(2)$	$p_2(x_1, x_2)$
3	$\rho(3)$	$p_3(x_1, x_2, x_3)$
4	$\rho(4)$	$p_2(x_1, x_2, x_3, x_4)$
n	$\rho(n)$	$p_n(x_1, x_2, x_3, x_4, \dots, x_n)$

Representation: The probability generating functional (p.g.fl.)

$$G_{\Phi}(v) = J_{\Phi}^{(0)} + \sum_{n \ge 1} \frac{1}{n!} \int v(x_1) \dots v(x_n) J_{\Phi}^{(n)} (\mathbf{d}(x_1, \dots, x_n))$$

THE GENERAL THEORY OF STOCHASTIC POPULATION PROCESSES BY J. E. MOYAL

Australian National University, Canberra, Australia (1)

Point process modelling – Poisson clusters

 $G_{\Phi_{\mathrm{d}}}(h) = G_{\Phi_{\mathrm{p}}}\left(G_{\Phi_{\mathrm{e}}}(h|\cdot)
ight)$

Composition of Poisson processes:

14

Application - tracking groups SSA context: eg. tracking debris clouds

Functional derivatives and the population mean

Important statistical quantities are determined from the p.g.fl. with functional derivatives:

$$\delta f(x;\eta) = \lim_{n \to \infty} \frac{1}{\theta_n} \left(f(x + \theta_n \eta_n) - f(x) \right)$$

For example, the mean, or intensity, measure is found with

$$\mu_{\Phi}^{(1)}(B) = \delta(\mathcal{G}_{\Phi}[h]; 1_B)|_{h=1},$$

PHD filter [Mahler 03]

Multi-target Bayes filter

TRACKING FROM TELESCOPE DATA

JOINT SENSOR DRIFT AND OBJECT ESTIMATION

1. BACKGROUND

- ► To *detect* and *track* observed objects
- ► To *classify* objects in the scene (eg. stars vs satellites)
- ► To estimate and compensate for telescope drift

TELESCOPE DRIFT

 Mechanical imperfections of the mount

1. BACKGROUND

- Diurnal motion of the stars (in case of the static mount)
- Basic jitter due to the wind or unstable earth

CURRENT SOLUTIONS

Joint Estimation of Telescope Drift and Tracking

SENSOR STATE ESTIMATION

- ► Joint sensor estimation and multi-target tracking^[18]:
 - Parent process telescope motion
 - Daughter process objects motion
- Particle filter for sequential estimation of telescope position

SENSOR STATE ESTIMATION

- Joint sensor estimation and multi-target tracking:
 - Parent process telescope motion
 - Daughter process objects motion
- Particle filter for sequential estimation of telescope position

SENSOR STATE ESTIMATION

- Every particle corresponds to:
 - Sensor state estimate (relative position of the telescope)
 - Multi-target state for objects (linear motion model)
 - Multi-target state for stars (static)

$$p(\mathbf{X}_k, \mathbf{y}_k | \mathbf{Z}_{1:k}) = p(\mathbf{X}_k | \mathbf{Z}_{1:k}, \mathbf{y}_k) p(\mathbf{y}_k | \mathbf{Z}_{1:k})$$

$$\uparrow \qquad \uparrow$$
Multi-target filter Particle filter

REAL DATA RESULTS

(NEO 2007HA during its close passage to the Earth).

Joint estimation of telescope drift and object tracking

NEO 2007HA during its close passage

Multi-sensor multi-target tracking techniques for Space Situational Awareness

Topics:

- 1. Tracking trajectories of individual objects
- 2. Multi-target tracking
- 3. Joint sensor motion, target tracking, and classification

