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Space

China's Tiangong-1 space station ‘out of
control' and will crash to Earth

Chinese authorities confirm the eight-tonne ‘Heavenly Palace’ lab will re-enter
the atmosphere sometime in 2017 with some parts likely to hit Earth

K3 China's Long March 2-F rocket, which took the Tiangong-1 space module into space. Photograph:
STR/AFF/Getty Images



Multi-sensor multi-target tracking techniques
for Space Situational Awareness

Motivation: Methods for tracking space debris are essential to prevent
damage to expensive space-related infrastructure and to determine cause.

Examples of recent events:
+» 2009 Russian Kosmos 2251/US Iridium 33 collision.
%+ 2007 Chinese anti-satellite test.

https://en.wikipedia.org/wiki/2007_Ch

inese_anti-satellite_missile._test https://en.wikipedia.org/wiki/2009

_satellite_collision

Objective: Develop methods for estimation of populations of objects in orbit
from sensor data.



Multi-sensor multi-target tracking techniques
for Space Situational Awareness

Topics:
1. Tracking trajectories of individual objects

2. Multi-target tracking

3. Joint sensor motion, target tracking, and classification




TARGET TRACKING: PREDICTION
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TARGET TRACKING: UPDATE
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TARGET TRACKING: ORBITING OBJECTS




TRACKING A SATELLITE FROM LASER RANGING
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TRACKING FROM WEATHER RADAR

Chilbolton Advanced Meteorological Radar

@ Fully steerable meteorological 3Ghz radar
with a Doppler capability

@ Modified in 2010 to carry out Space
Situational Awareness (SSA) operations

@ Low Earth Orbit (LEO) object tracking

Image Credit:
http:/ /www.metoffice.gov.uk/

Andrey Pak (VIBOT) CAMRa Data Processing July 17, 2015 2/4




MULTI-OBJECT FILTERING
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TRACKING MULTIPLE ORBITING OBJECTS
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Multi-object modelling
SSA context: eg. debris modelling

A spatial point process is a ® e .
probabilistic representation of a & %
random set of objects N v

For example: feo @ °

- 2-dimensional positions of s
objects in an image from a

sensor (i.e. an observation &
space) " ® 8 a

- 3-dimensional positions and
velocities of objects in

some real-world environment
(i.e. a state space).
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Point processes

Number of objects Cardinality probability  Joint spatial density

0 p(0) -

1 p(1) p1(x1)

2 P(2) p2(x1,x2)

3 P(3) P3(x1,x2,X3)

4 p(4) pa(x1, X2, X3,X4)

n p(n) Pn(X1,X2,X3,X4,...,Xp)

Representation: The probability generating functional (p.g.fl.)

THE GENERAL THEORY OF STOCHASTIC POPULATION
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Point process modelling — Poisson clusters
Gs,(h) =Gs, (Gs,(h]))

Composition of Poisson processes:
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Application - tracking groups

SSA context: eg. tracking debris clouds
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Functional derivatives and the population mean

Important statistical quantities are determined from the p.g.fl. with
functional derivatives:

1
of 6 ) = lim — (f e+ bma) —f ()

For example, the mean, or intensity, measure is found with

p(B) = 8(Golh): 15)|n1,

et D(x) = density of expected number
- of points a x

intensity function D

7/ fs D(x)dx = expected number
of points in §
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THE PHD FILTER

intensity function D

PHD filter [Mahler 03]
A Vk-1|k-1(xk-1|Z1:k-1);%& Vk|k-1(xk|ZI:k-1) %:te’vﬂk(xklzlzk) —
t t t

prediction

Mamne pk—l|k—1(Xk-1|ZI:k-1) - Pk|k-1(Xk|Z1;k-1) w’pmk(XAth) —

Multi-target Bayes filter



TRACKING FROM TELESCOPE DATA




HERIOT 1. BACKGROUND

IWATT

UNIVERSITY

JOINT SENSOR DRIFT AND OBJECT ESTIMATION

» To detect and track observed objects
» To classify objects in the scene (eg. stars vs satellites)

» To estimate and compensate for telescope drift




HERIOT 1. BACKGROUND

NATT

UNIVERSITY

TELESCOPE DRIFT

» Mechanical
imperfections of the
mount

» Diurnal motion of the
stars (in case of the
static mount)

» Basic jitter due to the
wind or unstable
earth
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Joint Estimation of Telescope Drift and Tracking



SENSOR STATE ESTIMATION

» Joint sensor estimation and multi-target trackingl'®l:

» Parent process

- telescope motion

» Daughter process - objects motion

» Particle filter for sequential estimation of telescope position

Every particle is a
hypothesis of a
telescope position with
linked multi-target
estimation and weight

Sensor state space
Particle filtering

' Multi-object state space
\ " (PHD filter)

Observation state space
Image detections



SENSOR STATE ESTIMATION

» Joint sensor estimation and multi-target tracking:

» Parent process - telescope motion
» Daughter process - objects motion

» Particle filter for sequential estimation of telescope position

Every particle is a Sensor state space
hypothesis of a Particle filtering
telescope position with
linked multi-target
estimation and weight

Multi-object state space

»  Weight is assigned ‘ . (PHD filter)

to the particles
according to the
likelihood of the
observations, given
sensor state
estimate.

' Observation state space
' Image detections



SENSOR STATE ESTIMATION

» Every particle corresponds to:
» Sensor state estimate (relative position of the telescope)
» Multi-target state for objects (linear motion model)

» Multi-target state for stars (stafic)

P X, YilZy:k) = pXilZy: 16, Vi) pP(Vi |2 k)

1 L}

Multi-target filter  Particle filter



REAL DATA RESULTS

(NEO 2007HA during its close passage to the Earth).



Joint estimation of telescope drift and object tracking

NEO 2007HA during its close passage
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Multi-sensor multi-target tracking techniques
for Space Situational Awareness

Topics:
1. Tracking trajectories of individual objects

2. Multi-target tracking

3. Joint sensor motion, target tracking, and classification




