

Fractional Fourier Transform Based Co-Radar Waveform: Experimental Validation

<u>D. Gaglione</u>¹, C. Clemente¹, A. R. Persico¹, C. V. Ilioudis¹, I. K. Proudler², J. J. Soraghan¹

¹ University of Strathclyde

² Loughborough University

SSPD Conference

Outline

- Joint Radar-Communication Systems
- FrFT Based Co-Radar
 - Waveform Design
 - Comparison with OFDM
- Experimental Validation
 - Equipment
 - Setup
 - Implementation
 - Results
- Conclusions

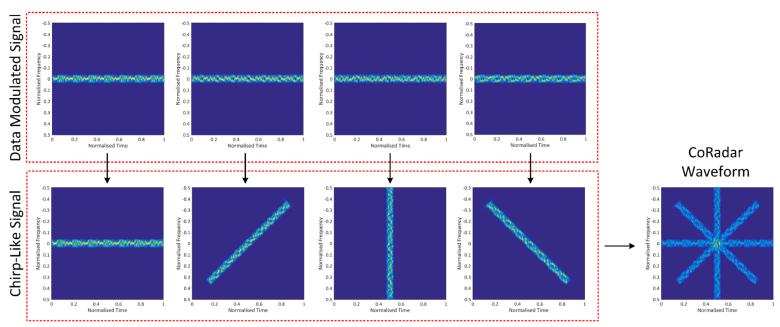
Joint Radar-Comms Systems

In some scenarios there is the **dual need** for a system to perform **radar operations** (target detection and classification, velocity estimation, imaging, etc.) while **sending data** to another cooperative system, i.e.:

- Nodes in a Surveillance Multiple-Input Multiple-Output (MIMO) Radar Network;
- Satellite/Airborne Synthetic Aperture Radar (SAR) and a Ground Base Station;
- Vehicles in an Intelligent Transportation System (ITS).

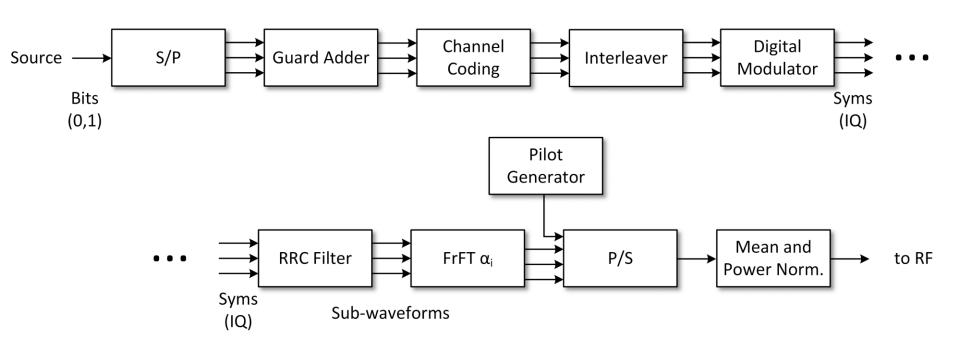
Possible Solutions:

- Use of a Secondary Communication System
 - Verhead of resources allocation
- Switch Between Radar and Communication Operations
 - Resources sharing
 - ✗ Not continuous radar operation
- Embedding Data in the Radar Waveform
 - Resources sharing
 - Continuous radar operation


Co-Radar – Waveform Design

Chirp Division Multiplexing

Aim Develop a novel radar waveform that embeds data while keeping the good properties of a LFM pulse.


Idea Different chirp-like signals that embed the information to transmit are generated and multiplexed (combined) to form the **Co-Radar pulse**.

The mathematical tool that provides a chirp-like representation of a generic signal is the **Fractional Fourier Transform (FrFT)**, a generalisation of the well-known Fourier Transform.

Co-Radar – Waveform Design

Block Diagram

- A repetition Error Correcting Code (ECC) is used with a Barker code sequence;
- The Interleaver is used as Inter-Carrier Interference (ICI) mitigation technique;
- The pilot waveform is a bi-phase coded signal run by a Coarse/Acquisition (C/A) code.

University of

Engineering

Strathclvde

Co-Radar – Waveform Design

Interleaver for ICI Mitigation

D

B

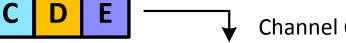
Α

С

Ε

Sequence (*datawords*) to be transmitted on the i-th sub-carrier

Co-Radar – Waveform Design


University of Strathclyde Engineering

Interleaver for ICI Mitigation

B

Α

Sequence (*datawords*) to be transmitted on the i-th sub-carrier

Channel Coding – Barker Code L = 3

Co-Radar – Waveform Design

University of Strathclyde Engineering

Interleaver for ICI Mitigation

D

Ε

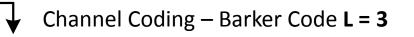
B

Α

С

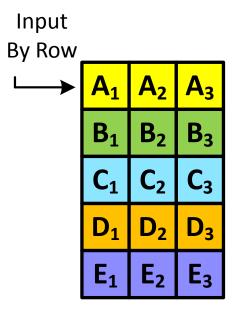
Sequence (*datawords*) to be transmitted on the i-th sub-carrier

ICI entirely affects dataword C.


Co-Radar – Waveform Design

Interleaver for ICI Mitigation

D


Ε

Sequence (datawords) to be transmitted on the i-th sub-carrier

ICI entirely affects dataword C.

B

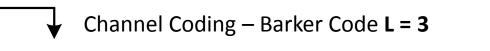
Α

С

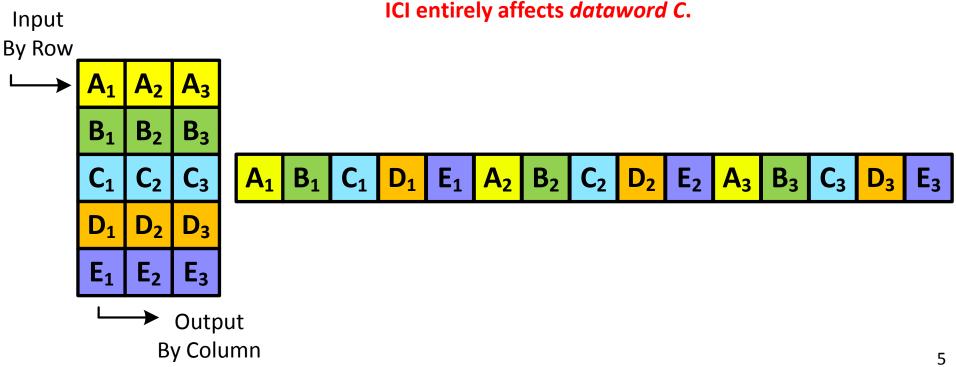
Co-Radar – Waveform Design

Interleaver for ICI Mitigation

D


B

Α

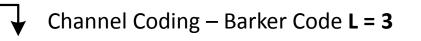

С

Ε

Sequence (*datawords*) to be transmitted on the i-th sub-carrier

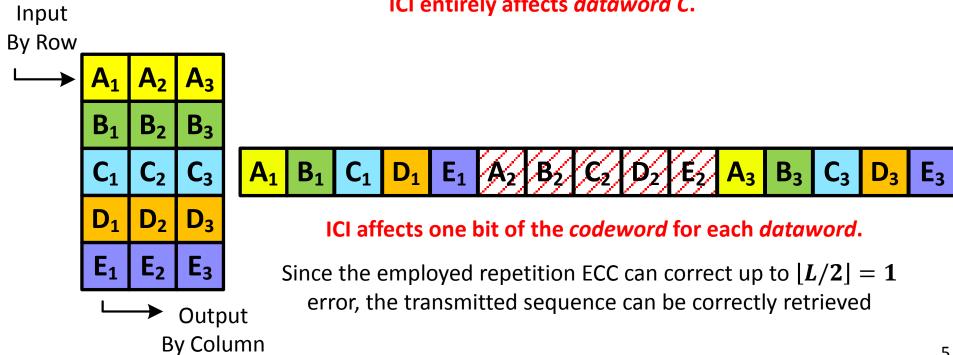
University of Strathclvde

Engineering


Co-Radar – Waveform Design

Interleaver for ICI Mitigation

В

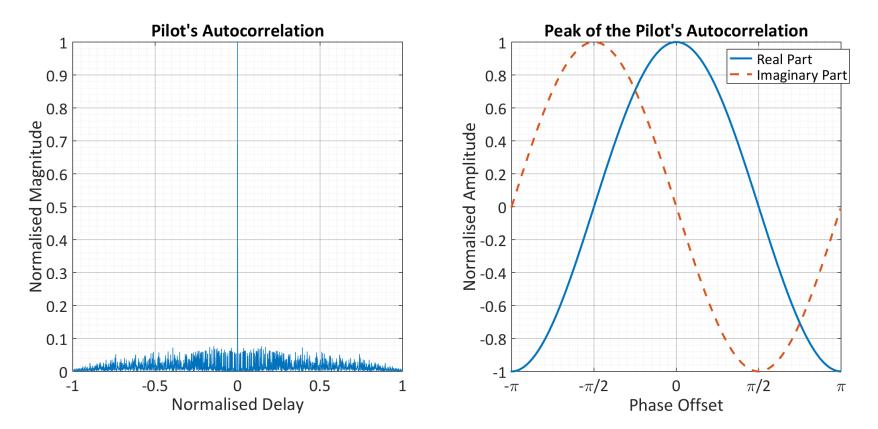

Ε

Sequence (*datawords*) to be transmitted on the i-th sub-carrier

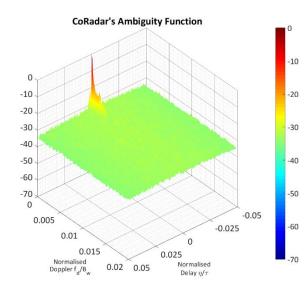
 E_1 **E**₂ **E**₃ B₁ **∕B∕**₂∕ [D1 A_3 \mathbf{B}_2 D_2 Da A₂ A_1

ICI entirely affects dataword C.

Co-Radar – Waveform Design

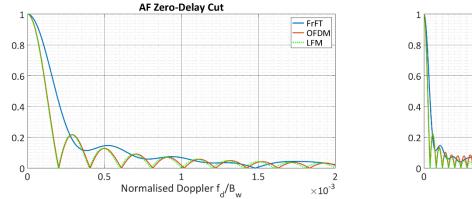

Pilot Waveform

The **pilot waveform** is a bi-phase coded signal run by a Coarse/Acquisition (C/A) code:


$$p[n] = e^{j\pi\left(a[n] - \frac{1}{4}\right)}$$

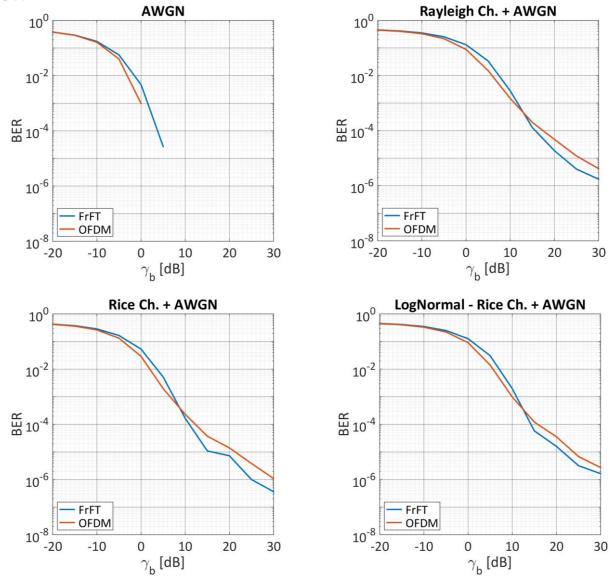

where a[n] is the selected C/A code.

Co-Radar – Comparison w/OFDM


Radar

University of Strathclyde

Engineering


Resolution is slightly traded with much better Side-lobe Levels compared to the OFDM.

Co-Radar – Comparison w/OFDM

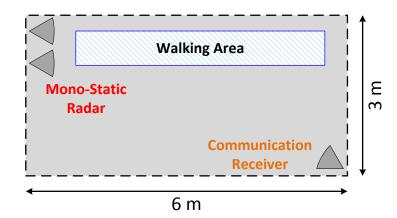
Communication

Equipment

The system has been implemented by means of a Software Defined Radio (SDR) device and validated in a controlled laboratory environment.

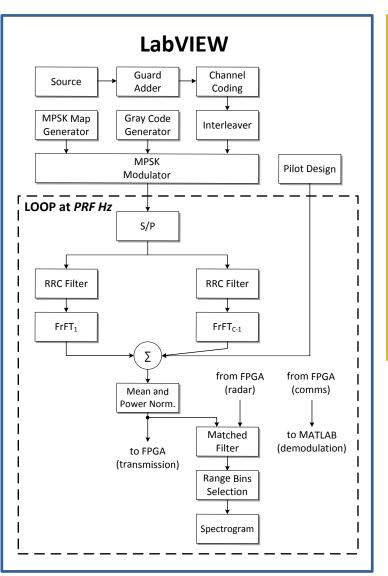
SDR NI-USRP 2943r

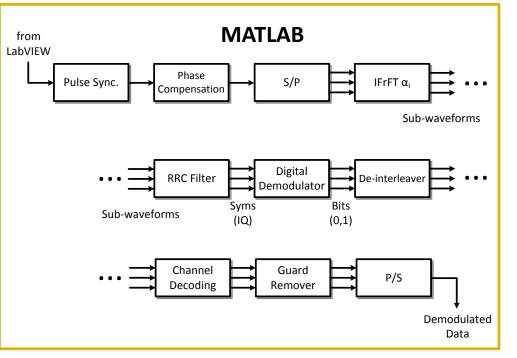
Horn Antenna x3 A-INFO LB-2678-15


National Instruments (NI) Universal Software Radio Peripheral (USRP) 2943r:

- 2 receivers and 2 receivers/transmitters;
- Carrier frequency 1.2-6.6 GHz, max bandwidth 20 MHz;
- Equipped with a fully programmable Xilinx Kintex-7 FPGA;
- Easy for prototyping through LabVIEW.

Setup

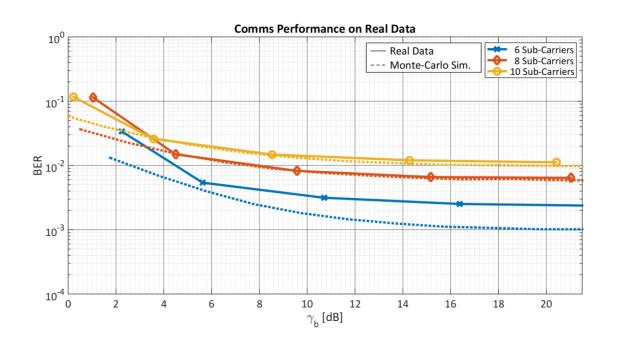



- The system is composed by a Mono-Static Radar and a Communication Receiver;
- The Mono-Static Radar:
 - 1) generates the Co-Radar pulses which embed an image;
 - 2) listen to echoes and matched filters them;
- The Communication Receiver acquires the pulses and demodulates them.

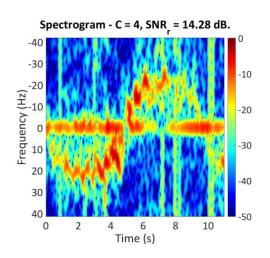
Implementation

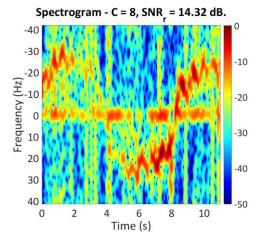
- LabVIEW deals with the generation of the Co-Radar waveforms, their transmission and the reception of both the radar and the communication signals.
- The latter, once acquired, are then transferred to a MATLAB session which extracts the embedded data.

Video


Communicating Radar Technology Using Fractional Fourier Transform Division Multiplexing

https://www.youtube.com/watch?v=837krJcAUKQ


Results


System Configuration:

- Carrier frequency 3 GHz, bandwidth 1 MHz;
- Pulse length 378 μs, PRF 83.33 Hz;
- 3 bits per sub-carrier, repetition ECC with Barker code L = 7;
- Number of sub-carriers: 4, 6, 8, 10.

Conclusions

- A novel joint Radar-Communication waveform design framework based on the Fractional Fourier Transform was presented.
- It allows to efficiently use the hardware, power and bandwidth resources already allocated for radar purposes to also send data to another cooperative system.
- The FrFT Co-Radar system was successfully implemented on a SDR device and its performance demonstrated in a controlled laboratory environment.
- Results show the capability of the proposed system of supporting simultaneously radar and communication tasks while sharing hardware, power and bandwidth resources.

Thank you! Any Question?

The University of Strathclyde is a charitable body, registered in Scotland, with registration number SC015263