Discriminating Underwater LiDAR Target Signatures using Sparse Multi-spectral Depth Codes

Puneet Chhabra, PhD Candidate (2017)

Aurora Maccarone, Aongus McCarthy, Andrew M Wallace and Gerald S Buller

Supervisors: Andrew M Wallace, James R Hopgood

"Aim: Analyse Full-Waveform Multi-Spectral Single Photon Counting (SPC) LiDAR data in order to improve aerial and bathymetric situational awareness".

"First piece of work to show that underwater LiDAR can be an alternative to sonar based mine-countermeasures..."

"Aim: Analyse Full-Waveform Multi-Spectral Single Photon Counting (SPC) LiDAR data in order to improve aerial and bathymetric situational awareness".

Underwater Mine Countermeasures

Aims

- Classify target (mine) signatures...
 using FW multi-spectral LiDAR
- Combining material classification
 plastics, concrete, metal

Potentially hidden behind foliage
 plants or other materials

1917-1919 Mine Dump at Inverness*, Scotland

Outline

- Problem Overview
- SPC Experimental Setup
- Methodology
- Results
- Future work & Improvements

Multi-Spectral Single Photon Counting Waveforms

Problem Overview

SPC Experimental Setup

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, "Underwater depth imaging using time-correlated single photon counting," Optics Express, vol. 23, no. 26, pp. 33911–33926, 2015.

SPC Experimental Setup

Methodology

 A novel reflectance aware surface representation, a "Spectral Depth Representation (SDR)" is proposed for underwater SPC and aerial LiDAR data.

Methodology

Stage 1: Spectral Depth Representation

$f(t) = h(c^{-t}T_1 - c^{-t}T_2) - (t > 0)$

Full-waveform Spectral Properties

where,
$$k = \frac{\mathcal{T}_2 e^{(t_p - t_0)\mathcal{T}_1}}{(\mathcal{T}_2 - \mathcal{T}_1)}$$
, and $t_p = \frac{\ln(\mathcal{T}_2/\mathcal{T}_1)}{(\mathcal{T}_2 - \mathcal{T}_1)}$

p_10

O

O P₇

		/		
	Linearity $L_{\mathcal{E}}$	$\frac{\mathcal{E}_1 - \mathcal{E}_2}{\mathcal{E}_1}$	Sphericity $S_{\mathcal{E}}$	$rac{\mathcal{E}_3}{\mathcal{E}_1}$
_	Planarity $P_{\mathcal{E}}$	$rac{\mathcal{E}_2 - \mathcal{E}_3}{\mathcal{E}_1}$	Anisotropy $A_{\mathcal{E}}$	$\frac{\mathcal{E}_1 - \mathcal{E}_3}{\mathcal{E}_1}$

$\begin{array}{l} \textbf{SPECTRAL DEPTH} \\ \textbf{REPRESENTATION (SDR)} \end{array} \quad \textbf{F} = \begin{bmatrix} \{\mathcal{T}_{1,\lambda}\}_{\lambda=1}^{\Lambda}, \{\mathcal{T}_{2,\lambda}\}_{\lambda=1}^{\Lambda}, \{A_{\lambda}\}_{\lambda=1}^{\Lambda}, \\ A_{\mathcal{E}}, P_{\mathcal{E}}, S_{\mathcal{E}}, L_{\mathcal{E}}, D_{z} \end{bmatrix} \end{array}$

Stage 2.1: Signal Approximation & Discrimination

 Discriminatory Sparse Codes are created using a novel semi-supervised "Signal Approximation and Discrimination (SAD)" scheme.

Stage 2.1: Signal Approximation & Discrimination

Stage 2.1a: Discriminant term $G(\mathbf{Q})$

 $\mu_c = \frac{1}{\mathbf{K}_c} \sum_{q \in \Omega_c} q$

 Ω

 $\sum v_c^2$

Given: Set of coefficients $\mathbf{Q} = [q_1, q_2, ..., q_K] \quad \Omega_c$, for $1 \leq c \leq \Omega \quad \mu = \frac{1}{K} \sum_{k=1}^K q_k$

Class-wise mean

$$v_{c}^{2} = \frac{1}{K_{c}} \sum_{z \in \Omega_{c}} ||z - \mu_{c}||_{2}^{2}$$
 $G(\mathbf{Q}) = S_{w}^{-1} S_{b}$

Class-wise variance

Inter-class scatter matrix

$$S_{b} = || \sum_{c=1}^{\Omega} \mathbf{K}_{c} (\mu_{c} - \mu) (\mu_{c} - \mu)^{T} ||_{2}^{2}$$

Intra-class scatter matrix

$$S_w =$$

Stage 2.1b: Greedy Solution

Input: $\mathbf{F} = \{f_n\}_{n=1}^N \in \mathbb{R}^{N \times P}, \beta_1, \beta_2$ **Output:** Dictionary, atom indices and coefficients $\mathbf{R}_0 \leftarrow \mathbf{F}, dictIdx \leftarrow \phi$ while $\mathbf{R}_0 \rightarrow 0$ do $t \leftarrow 0$ Select $z_k \in \mathbf{Z}$, such that $\min_{\mathbf{Q},\mathbf{Z}} \left[\beta_2 \sum_{n=1}^{N} ||f_n - q_n \mathbf{Z}||^2 + \beta_1 \sum_{n=1}^{N} |q_n|_1 + G(\mathbf{Q}) \right],$ subject to $|q_n| \leq 1, \forall n = 1, 2, ..., N$ $dictIdx \leftarrow dictIdx \cup k$ // Projection and residual $\mathbf{O}_t \leftarrow \mathbf{Q} * inv(\mathbf{Q}^T * \mathbf{Q}) * \mathbf{Q}^T$ $\mathbf{R}_t \leftarrow \mathbf{F} - \mathbf{O}_t \mathbf{F}$ $t \leftarrow t + 1$ end return $\mathbf{Q}, \mathbf{Z}, dictIdx$

Recall...

Spectral Depth Representation (SDR)

$$\mathbf{F} = \begin{bmatrix} \{\mathcal{T}_{1,\lambda}\}_{\lambda=1}^{\Lambda}, \{\mathcal{T}_{2,\lambda}\}_{\lambda=1}^{\Lambda}, \{A_{\lambda}\}_{\lambda=1}^{\Lambda}, \\ A_{\mathcal{E}}, P_{\mathcal{E}}, S_{\mathcal{E}}, L_{\mathcal{E}}, D_{z} \end{bmatrix}$$

Trying to solve...

$$\begin{split} \min_{\mathbf{Q},\mathbf{Z}} \left[\beta_2 \sum_{n=1}^{N} ||f_n - q_n \mathbf{Z}||^2 + \beta_1 \sum_{n=1}^{N} |q_n|_1 + G(\mathbf{Q}) \right], \\ \text{subject to } |q_n| \leqslant 1, \ \forall n = 1, 2, ..., N \end{split}$$

Stage 3: Prediction

• Signal labels are generated using a classification scheme

Stage 3: Prediction

Summary...

Full-waveform + Shape Properties

Stage I (Algorithm 1 in the paper)

Sparse Spectral Depth Codes

Stage II (Algorithm 1 & 2 in the paper)

Pixel-wise Prediction

Stage III (Algorithm 1 in the paper)

Experiments

- No. of samples: 40,000 90,000
- Signal dimension: 53
- No. of wavelengths: 16 (500 725nm)
- Laser repetition: 19.5Mhz
- Laser beam-diameter: ~ 300µm
- Environment: Clear tap water
- Target signature classification (pixel-wise)
- 10 fold cross-validation
- Compared against ground truth

Experiment 1 – Material Discrimination Sand Plastic Metal Experiment 2 – Mine Discrimination Sand Plastic 1 Plastic 2 Metal 1 Metal 2

Experiment 3 – Without depth/curvature features

Results

Material Discrimination

	Sand	Plastic	Metal
Sand	0.9721	0.0144	0.0133
Plastic	0.0151	0.9823	0.0024
Metal	0.0140	0.0035	0.98239

Mine Type Discrimination

	Plastic 1	Plastic 2	Metal 1	Metal 2	Sand
Plastic 1	0.9755	0	0.0020	0	0.0224
Plastic 2	0.0054	0.9905	0.0007	0.0020	0.0014
Metal 1	0.0014	0.0027	0.9946	0	0.0014
Metal 2	0.0014	0.0068	0	0.9891	0.0027
Sand	0.0102	0.0007	0	0.0007	0.9884

Effect of DR on accuracy

	Plastic 1	Plastic 2	Metal 1	Metal 2
Without DR(%)	92.65	95.65	97.62	98.10
With DR(%)	97.55	99.05	99.46	98.91

Underwater Foliage Penetration

- Preliminary results on floating mines
- Unsupervised clustering
- Performed only at **500nm**

Improvements

Future Work

- Greedy methods can be slow and do not scale for large real-world datasets... not anymore!
- How to handle non-linearity in the data?
- Different marine environments

More targets under investigation

- Different materials and background
- Floating targets behind foliage

A fast kernel discriminatory orthogonal dictionary learning method to classify large-scale, high-dimensional datasets and handle non-linearity.

Thank you!

University Defence Research Collaboration For more information on the UDRC group please visit: <u>http://www.mod-udrc.org</u>