

Sensor Signal Processing for Defence Conference (SSPD) Edinburgh, September 2016

Transmit Adaptivity in Radar

Antonio De Maio¹, with the collaboration of:

Augusto Aubry² Vincenzo Carotenuto³ Salvatore Iommelli⁴

イロト イポト イヨト イヨ

- 1. Professor, University of Naples, Federico II, FIEEE
- 2. PostDoc, University of Naples, Federico II, MIEEE
- 3. PostDoc, University of Naples, Federico II, MIEEE
- 4. Ente di Formazione Professionale Maxwell, Napoli

Outline

- 1 Transmit Adaptivity in Radar
- 2 Radar Waveform Design for Spectral Coexistence
- 3 Some Results
- 4 Conclusions and Future Researches

5 References

・ロト ・回ト ・ヨト ・ヨ

Transmit Adaptivity: Introduction & Motivation

Radar performance is highly dependent on the probing waveform.

Waveform design can be formulated as a Constrained Optimization Problem.

Optimizing Fast-Time Modulation

Benefits of **tailoring the transmit waveform** (fast-time modulation) to account for a colored noise RF interference source.

Additional context-dependent constraints can be also forced to the radar waveform.

This shaping technique can be also exploited to control the impact of radar on other communication systems.

< ロ > < 同 > < 三 > < 三

- A. De Maio, S. De Nicola, Z.-Q. Luo and S. Zhang, "Design of Phase Codes for Radar Performance Optimization with a Similarity Constraint", IEEE Transactions on Signal Processing, February 2009.
- J. R. Guerci, "Cognitive Radar, the Knowledge-Aided Fully Adaptive Approach", 2010.

Spectral Coexistence

Spectrally Crowded Environments

Coexistence among radar and telecommunication systems is currently becoming one of the **challenging research topics** in both radar and communication communities.

"The desire to autonomously anticipate, find, fix, track, target, engage and assess anything, anytime, anywhere in spectrally-dense environments will require changes to how build, modify, and deploy radar and radio frequency systems." M. Wicks 2010.

It is thus **mandatory** the development of **advanced radar signals** ensuring **compatibility** with the surrounding electromagnetic radiators, namely keeping acceptable the mutual interference induced on frequency overlaid systems.

イロト 不得下 イヨト イヨト

Signal Model

Let us consider a monostatic **radar system** transmitting a signal composed of *N* **sub-pulses** and denote by

 $\mathbf{c} = [c(1), \ldots, c(N)]^T \in \mathbb{C}^N$

the *N*-dimensional fast-time radar code. Thus, the *N*-dimensional column vector $\mathbf{v} \in \mathbb{C}^N$ of the observations, from the range-azimuth cell under test, can be expressed as:

 $\mathbf{v} = \alpha \mathbf{c} + \mathbf{n}.$

- α is a complex parameter accounting for channel propagation and backscattering effects from the target within the range-azimuth bin of interest;
- **n** is the *N*-dimensional column vector containing the **filtered disturbance echo samples**:
 - it accounts for both white internal thermal noise as well as interfering signals sharing the same frequencies as the radar of interest;
 - (a) it is modeled as a complex, zero-mean, circular Gaussian random vector sharing the covariance matrix M.

オロト オポト オヨト オヨト ヨー ろくで

Cooperative Radiators & Induced Interference

Cooperative radiator working over a frequency band $\Omega_k = [f_1^k, f_2^k]$.

where \mathbf{R}_{l}^{k} depends on Ω_{k} .

To guarantee spectral compatibility with K overlayed radiators, the radar has to control the energy produced on the shared frequency bands.

• Local control:

$$\mathsf{c}^{\dagger}\mathsf{R}^{k}_{I}\mathsf{c} \leq E^{k}_{I}, \; k=1,\ldots,K$$

- E_l^k is the amount of allowed interference level on the k-th band, k = 1, ..., K.
- Global control:

$$\mathbf{c}^{\dagger}\mathbf{R}_{I}\mathbf{c}\leq E_{I},$$

- $\mathbf{R}_I = \sum_{k=0}^{K} w_k \mathbf{R}_I^k$, with $w_k \ge 0$, $k = 0, \dots, K$, reflects the importance of a given radiator;
- E₁ is the global allowed interference level.

イロト イポト イヨト イヨト

Cognitive Spectrum Awareness

Radio Environment Map (REM) represents the key to gain spectrum cognizance which is at the base of an intelligent and agile spectrum management.

Waveform Design: Objective Function & Constraints

• Optimizing the detection performance, through the maximization of the Signal to Interference plus Noise Ratio (SINR), namely

 $\mathsf{SINR} = |\alpha|^2 \mathbf{c}^{\dagger} \mathbf{R} \mathbf{c},$

where $\mathbf{R} = \mathbf{M}^{-1}$.

• Forcing desirable radar features to the transmitted waveform accounting for an energy constraint and a generalized similarity constraint with a prescribed waveform c_0 .

$$\begin{split} \|\mathbf{c} - \alpha_{c_0}\mathbf{c}_0\|^2 &\leq \epsilon \\ |\alpha_{c_0}|^2 &\leq 1 \end{split}$$

イロト 不得下 イヨト イヨト

• Providing a control on the interference energy produced on shared bands.

1/2

Waveform Design: Objective Function & Constraints

The waveform design problems can be formulated as:

2/2

Some Results

The baseband equivalent transmitted signal has a **two-sided bandwidth** of 810 kHz and a Nyquist sampling frequency is used. The **disturbance covariance matrix** is modeled as

• $\sigma_{J,k}$ and $\sigma_{I,k}$ account for the energy of the *k*-th active jammer and the energy of the *k*-th coexisting telecommunication network operating on the normalized frequency band Ω_k ($\sigma_{I,k} = 10 \text{ dB}$, k = 1, ..., 7, $\sigma_{J,1} = 40 \text{ dB}$, $\sigma_{J,2} = 50 \text{ dB}$);

• **R**_{*J*,*k*} is the normalized covariance matrix of the *k*-th active unlicensed narrowband jammer.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つくで

1/5

Some Results

As to the reference code c_0 , a unitary norm LFM pulse with a duration of 200 μ s and a chirp rate $K_s = (750 \times 10^3)/(200 \times 10^{-6})$ Hz/s is employed.

A D > A P > A B > A

Some Results

Normalized SINR versus ϵ .

Legend: Global Design; Local Design. Code energy versus ϵ .

・ロト ・回ト ・ヨト ・ヨ

Some Results

ESD versus normalized frequency considering $\epsilon = 0.31$.

Legend: Reference Code; Global Design; Local Design. Squared modulus of ACF versus delay bin considering $\epsilon = 0.31$.

Image: A match the second s

Some Results

Squared modulus of ACF versus delay bin.

Image: A match the second s

Conclusions and Future Researches

- Transmit Adaptivity in Radar has been discussed.
- Synthesis of radar waveforms in spectrally crowded environment has been presented and analyzed.

Possible **future research tracks**: development of robust frameworks to contrast **transmitter impurities** and the fully exploitation of the available **multiple dimensions**:

- polarization;
- space;
- frequency;
- orbital angular momentum;
- ...

イロト イポト イヨト イヨト

• A. E. Willner, "Communication with a Twist", IEEE Spectrum, pp. 34-39, August 2016.

References

References

- F. Gini, A. De Maio, and L. Patton, Waveform Design and Diversity for Advanced Radar Systems, The Institution of Engineering and Technology (IET), June 2011.
- A. Aubry, A. De Maio, M. Piezzo, and A. Farina, "Radar Waveform Design in a Spectrally Crowded Environment via Nonconvex Quadratic Optimization", IEEE Trans. on Aerospace and Electronic Systems, Vol. 50, No. 2, pp. 1138-1152, April 2014.
- A. Aubry, A. De Maio, Y. Huang, M. Piezzo, and A. Farina, "A New Radar Waveform Design Algorithm with Improved Feasibility for Spectral Coexistence," IEEE Trans. on Aerospace and Electronic Systems, Vol.51, No.2, pp. 1029-1038, April 2015.
- A. Aubry, V. Carotenuto and A. De Maio, "Forcing Multiple Spectral Compatibility Constraints in Radar Waveforms", IEEE Signal Processing Letters, Vol. 23, No. 4, pp 483-487, April 2016.
- A. Aubry, V. Carotenuto, A. De Maio, A. Farina and L. Pallotta, "Optimization Theory-Based Radar Waveform Design for Spectrally Dense Environments", in press on IEEE Aerospace and Electronic Systems Magazine.

イロト イポト イヨト イヨト

THANK YOU FOR THE KIND ATTENTION

ademaio@unina.it

イロト イヨト イヨト イヨト