

GMTI in circular SAR data using STAP E. Casalini, D. Henke, and E. Meier

Sensor Signal Processing for Defence Conference

22nd and 23rd September 2016

Royal College of Surgeons

Edinburgh

SAR-GMTI

Synthetic Aperture Radar Ground Moving Target Indication

Northing

SAR-GMTI

Synthetic Aperture Radar Ground Moving Target Indication

SAR-GMTI radars:

- detect ground and maritime non-cooperative moving targets;
- allow precise tracking of a moving target;
- are near real-time;
- work irrespective of weather and light conditions;
- potentially cover wide areas;
- indicate moving targets and simultaneously image the area of interest;

SAR SYSTEM:

- DLR's F-SAR sensor;
- 1 transmitting antenna and 4 equally spaced receiving antennae;
- 9.6 GHz carrier frequency with 100 MHz bandwidth;
- Pulse repetition frequency of ca. 2016 Hz;

DATA SET:

- Circular acquisition geometry;
- Diameter of 3.5 km and mean altitude above ground of 2.7 km;
- > 300 thousands pulses (ca. 149 seconds);

Experiment Test site and area of interest

Preprocessing Block diagram

Preprocessing Raw datasets

Ρ

R

E P

R

0

С

E S

S

I

N

G

Preprocessing Range compression

Preprocessing Azimuth FFT

Preprocessing Array calibration

Preprocessing Array calibration

$$\boldsymbol{R}(k,w) = \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{Z}(k,w) * \boldsymbol{Z}'(k,w)$$
$$\boldsymbol{h}(k,w) = \boldsymbol{R}^{-1}(k,w) * \boldsymbol{v}(w)$$
$$\tilde{\boldsymbol{Z}}(k,w) = \boldsymbol{h}'(k,w) * \boldsymbol{Z}(k,w)$$

$$\boldsymbol{R}(k,w) = \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{Z}(k,w) * \boldsymbol{Z}'(k,w)$$
$$\boldsymbol{h}(k,w) = \boldsymbol{R}^{-1}(k,w) * \boldsymbol{v}(w)$$
$$\tilde{\boldsymbol{Z}}(k,w) = \boldsymbol{h}'(k,w) * \boldsymbol{Z}(k,w)$$

Z(*k*, *w*): spatial snapshot;

STAP Covariance matrix estimation

$$\boldsymbol{R}(k,w) = \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{Z}(k,w) * \boldsymbol{Z}'(k,w)$$
$$\boldsymbol{h}(k,w) = \boldsymbol{R}^{-1}(k,w) * \boldsymbol{v}(w)$$
$$\tilde{\boldsymbol{Z}}(k,w) = \boldsymbol{h}'(k,w) * \boldsymbol{Z}(k,w)$$

Detection Before

Detection After

SAR Processing

Easting

Northing

SAR Processing

Easting

Northing

SAR Processing

STAP-DERIVED DETECTIONS MAP Azimuth IFFT GBP GEOCODED SAR IMAGE

Easting

Northing

	SC	ATI	SC ∩ ATI	STAP
MT #1	95	66	98	100
MT #2	42	53	93	90
MT #3	41	57	87	94
MT #4	46	66	93	95
MT #5	3	29	29	81

- SC: number of Single Channel detections;
- ATI: number of Along Track Interferometry detections;
- SC ∩ ATI: number of combined SC/ATI detections;
- STAP: number of Space Time Adaptive Processing detections;

About circular acquisition geometries ..

- extended observation time;
- observation from different aspect angles;
- superiority in target discrimination;

About the algorithm: "pros" ..

- reliable detection rate;
- better results than SC, ATI and SC ∩ ATI;
- adaptable to any acquisition geometry;

.. and "cons" ..

- secondary data selection;
- processing time;

- One of the first STAP-based methods for GMTI in circular SAR data;
- average detection rate of ~90%;
- results superior to previously tested algorithms;

Outlook:

- better secondary data selection;
- implementation of *a-priori* inputs;
- merging of STAP with other methods;

Thank you!

