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LEARNING ENTROPY (Sample Entropy vs. Entropy Learning vs. Learning Entropy)

Sample Entropy (not used here):  A well recognized signal complexity evaluation algorithm (probability based quantification of signal complexity, Shannon-based approach).

Entropy Learning (not used here): A well recognized Shannon inspired neural network learning algorithm based on minimizing complexity (entropy) of neural weights in a network.

Learning Entropy (Entropy OF Learning, 2013, used here): A new [6] non-Shannon based novelty detection algorithm based on observation of unusual learning effort of incrementally learning systems. A 
relative measure of novelty (information) recognized by pre-trained learning system. Novelty detection on every individual sample of data in complex behavior using a simple adaptive filters (predictors).

Abstract—This paper recalls the practical calculation of  Learning Entropy (LE) for novelty detection, extends it for various gradient techniques and discusses its use for 
multivariate dynamical systems with ability of distinguishing between data perturbations or system-function perturbations. LE was introduced in 2013 [6] for novelty detection in 
time series via supervised incremental learning of polynomial filters, i.e. higher-order neural units (HONU). This paper demonstrates LE also on enhanced gradient descent 
adaptation techniques that are adopted and summarized for HONU. As an aside, LE is proposed as a new performance index of adaptive filters. Then, we discuss Principal 
Component Analysis and Kernel PCA for HONU as a potential method to suppress detection of data-measurement perturbations and to enforce LE for system-perturbation 
novelties.

Abbreviations
AISLE … Approximated Individual Sample Learning Entropy

GD … Gradient Descent

HONU… Higher-Order Neural Unit

ISLE … Individual Sample Learning Entropy

KPCA… Kernel Principal Component Analysis

LE … Learning Entropy

LEM...   Learning Entropy of a Model

LNU, LF… Linear Neural Unit, Linear (adaptive) Filter

NLMS… Normalized Least Mean Squares, (Normalized GD)

OLE … Order of Learning Entropy

QNU… Quadratic Neural Unit

SampEn …. Sample Entropy

Keywords—novelty detection; learning entropy; learning entropy of a model; multivariate system; higher-order neural unit; incremental learning; kernel principal component analysis
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Code of  (Approximate) Learning Entropy ( http://aspicc.fs.cvut.cz/ASPICC_Software.htm) 
#== Learning Entropy (AISLE) =======

def fcnEA(Wm,alphas,OLEs): #Wm ... recent window of weights including the very last weight updates
OLEs=OLEs.reshape(-1)
nw=Wm.shape[1]

nalpha=len(alphas)
ea=zeros(len(OLEs))

i=0
for ole in range(max(OLEs)+1):

if ole==OLEs[i]: # assures the corresponding difference of Wm

absdw=abs(Wm[-1,:]) # very last updated weights
meanabsdw = mean(abs(Wm[0:Wm.shape[0]-1,:]),0)

Nalpha = 0
for alpha in alphas:

Nalpha += sum(absdw>alpha*meanabsdw)

ea[i] = float(Nalpha)/(nw*nalpha)
i+=1

Wm = Wm[1:,:]-Wm[0:(shape(Wm)[0]-1),:] #difference Wm
return(ea)

An unusually large learning update 
of ith adaptable parameter for 

particular detection sensitivity

k … discrete index of time, p … prediction horizon, 

w … vector of all adaptable parameters ( nw × 1)

x … vector of inputs (and feedback variables if NARX) (x0=1)
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… quantity of unusual learning updates for given detection

sensitivity over all adaptable parameters at update time k
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HONU for Learning Entropy 
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GD learning rule :

QNU CNU

The advantage of HONU can be seen in 

customable polynomial nonlinearity and in-

parameter linearity that suppress local minima 

issues for optimization with fundamental 

learning algorithms. 
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Learning Entropy potentials for SSPD 
LE was recently introduced as a cognitive signal processing algorithm that opens new potentials to novelty detection and to further research in various areas. LE displays strong 
potentials to instantly detect perturbation or instant changes of dynamical behavior with every new individual measured sample of data, where other floating window-based signal 
processing methods (e.g. SampEn) might need windows of data and longer time intervals => LE can be used as a complementary method of instant detection and time allocation of 
novelties including very small changes in dynamics and complex correlations of signals with the use of simple and real-time computationally effective adaptive filters (LNU, QNU). Further 
in our paper in the proceedings, the approach for detection of system perturbations vs. data perturbations is founded with the use of LE and KPCA. We believe this is an interesting topic 
for research, e.g., of real-time evaluation of data and for efficient monitoring of correct functionality of sensors. Also, LE can be used to instantly estimate actual accuracy of adaptive 
predictors, e.g., for synchronization purposes – we have been investigating LE for increasing the accuracy of beam targeting of radiation tracking therapy for biomedical purposes 
(Bukovsky et al, IEEE IJCNN, 2014), we believe there are some potentials for SSPD purposes as well. For the cognitive and nonlinear capabilities of adaptive filters and neural networks, 
LE might be also investigated for information processing on complex signals under the noise level. Perhaps, this might be also interesting topic for research of LE for SSPD purposes. 

Modifications of GD Incremental  Learning for HONU

              Performance 

                        Index  

GD Method 

MAE RMSE LEM1 LEM2 LEM3 LEM4 

NMLS   0.099 0.13 11.8 9.39 8.73 0.31 

GNGD   0.099 0.13 11.8 9.40 8.74 0.31 

RR–NMLS  0.097 0.13 11.8 9.41 8.83 0.31 

Benveniste’s  0.237 0.35 14.9 15.0 15.7 4.2 

Farhang’s & Ang’s    0.253 0.35 12.2 11.2 11.7 0.98 

Mathew’s   0.253 0.35 12.3 11.2 11.7 0.98 

              Performance 

                        Index  

 

HONU (order) 

Mean 

Abs. 

Error 

Root 

Mean 

Sqrd. 

Error 

LEM1 LEM2 LEM3 LEM4 

LNU   (1) 0.024 0.029 5.44 6.79 11.0 0.012 

QNU   (2) 0.021 0.026 10.4 9.46 11.9 0.796 

CNU (3) 0.029 0.025 17.5 15.7 17.1 3.48 

    Based on Normalized Least Mean Squares (or Normalized GD) 
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  Based on Performance Index Derivative   
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Farhang’s & 

Ang’s   [13] 
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Conventional Error Criteria vs. LEMs of various OLEs for low-

dimensional QNU (n=5) for MacKey-Glass chaotic time series 

evaluated on first 300 samples, starting from random weights:
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EA4 (Approximate Learning Sample Entropy of Order 4)

Conventional Error Criteria vs. LEM for  MacKey-Glass 

chaotic time series for NLMS and various orders of HONU for 

adaptation samples k=8000:8300 (sampling 1 sec, n=5):

A typical result of detecting two small perturbations with 

NLMS-based modifications of GD. Notice, the predictor 

error (middle axes) does not indicate the two 

perturbations while AISLE (EA4) detects them uniquely:

y(3265:3267)=yo(3265:3267)+0.05; y(6530: 6532)=yo(6530: 6532)+0.05

OLE Notation Detection Rule of Unusual Learning Effort 
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Orders of LE 

(OLE) and 

Corresponding 

Detection 

Rules (adopted 

from (6)):

Order of Learning Entropy (OLE):

OLE determines the order of difference of adaptable parameters for calculating LE. 

(see the table on the left)

Learning Entropy Profile (LEP):

LEP is the integral of LE in time. (LEP is a cumulative graph of LE in time).

Learning Entropy of a Model (LEM):

LEM represents the total unusual learning effort of an adaptive model.

(LEM is the latest point of LEP). 


