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Introduction and Motivation

Clustering

K-means, EM & GMM
• Uses compactness in the data to cluster than connectivity.
• Literature: [Predd 2006, Yin 2014, Qin 2017, Zhou 2015, Forero 2012]

Figure: K-means type algorithm is effective for mixtures of Gaussian’s but fails for arbitrary shapes such as,
concentric circles, half-moons and spiral dataset.
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Introduction and Motivation

Clustering

Centralized Spectral Clustering
• Effective on datasets with connectivity as well as compactness.
• Projects the input data to Eigenspace to cluster.
• Key works: [Ng 2001, Luxburg 2007, Shi 2000]

Distributed Spectral Clustering ??
• Euclidean distance matrix completion + Gradient descent [Scardapane 2016]
• With minimal data exchange and avoid matrix completion ?

Figure: Spectral clustering works well for compact dataset like mixture od Gaussian’s and also for datasets
with connectivity structure, such as double-moons and concentric circles.
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Introduction and Motivation

Motivation

Motivation
• Gathering data at a fusion center creates data congestion.
• Vulnerable to cyber attacks and sensitive information loss.
• WSN’s is a source for a large set of unlabeled data.
• Thus, appropriate labeling mechanism is required.
• Clustering with minimal information exchange.

Source: Baran, Paul. ”On distributed communications networks.” IEEE transactions on Communications Systems 12, no. 1, 1964
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Introduction and Motivation

Applications

Potential Applications
• Clustering and data labeling.
• Learn the connectivity structure of the sensor deployment.
• Selection of anchor nodes and cluster heads.
• Limits data transmission, network traffic & contention for channel.
• Information flow in the network.
• Detect the change in sensors position.

Proposed Solution
• Fully Distributed processing.
• Minimal information exchange.
• Utilize the communication topology.
• Correlation between sensors location and measurements for data labeling.
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System Model

System Model

Graph representation of distributed network
• Distributed network with N nodes.
• Undirected graph G = (V,E), communications among neighbors.
• Degree matrix D : Diagonal matrix with the degrees of the nodes.
• Adjacency matrix A : aij = 1 if {i , j} ∈ E and aij = 0, otherwise.
• Laplacian matrix L = D− A used to characterize network.
• Connectivity of sensor network, λ2(L) and Fiedler vector u2(D)

Source: http://kuanbutts.com/2017/10/21/spectral-cluster-berkeley/
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Problem Statement

Problem Statement

No fusion center or sink node.
Goal : cluster the sensors in a distributed way, based on their position
without sharing the location information in the network.
DSC over K -means, EM or GMM, due to its effectiveness (as in Fig)
Extended to clustering on data measurements assuming high correlation
between sensor’s location and data measurements
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Figure: Sensors deployed in arbitrary shapes
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Centralized Spectral Clustering

Centralized Spectral Clustering

SC : Approximation of a graph partitioning problem

Prob : Find a partition of a graph such that the edges between different
groups have a very low weight and edges within a group have high weight.

(a) f ∈ {+1,−1} (b) f ∈ R

Figure: NP hard optimization problem and its relaxed version.
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Centralized Spectral Clustering

Relaxed Minimization Problem

The relaxed optimization problem is,

min
f∈R

fTLf

subject to f ⊥ 1, f 6= 0.

By Rayleigh-Ritz theorem : choose the f as the eigenvector corresponding
to the smallest non-zero eigenvalue of L, i.e Fiedler vector.

Algorithm
• Define the similarity graph
• Compute the eigenvectors of K smallest eigenvalues
• Cluster the eigenvectors
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Distributed Spectral Clustering

Distributed Spectral Clustering

Assumptions
• 1-connected component graph
• Sensor can communicate with other sensors within a radius of ε
• Absence of communication noise.

Tasks to be computed in a distributed way !!
• Define the similarity graph
• Use power iteration to compute the Fiedler vector
• Cluster the Fiedler vector

Similarity Graph
• ε - neighborhood method : nodes pairwise Euclidean distance less than ε are

assumed connected.
• Does not require an explicit construction, induced naturally by the ε and the

location of the nodes.
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Distributed Spectral Clustering

Distributed Fiedler vector computation

Matrix transformations and the power iteration method

Compute the eigenvector corresponding to the second smallest eigenvalue,
u2(L). [Lorenzo 2014]

Z = I− αL− 1

N
11T = W− 1

N
11T

ut+1 =
Zut

||Zut ||
, t ≥ 0

where u(0) is an initial random vector from a continuous distribution and
0 < α < 1/λN(L).

Distributed computation of Fiedler vector

utavg = avgconsensus(ut)

g t
i = uti − α

∑
j∈Ni

(uti − utj )− utavg

ut+1
i =

g t
i

||gt ||
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Distributed Spectral Clustering

Distributed K-means

Every node is associated with an element of the Fiedler vector. So, use a
clustering algorithm on the Fiedler vector.

Distributed K-means algorithm
• Input: Fiedler vector u2 = [u1

2 , u
2
2 , . . . u

N
2 ], K

• Every node generates µ = [µ1, . . . µK ] from rand(−1, 1)
• Repeat until convergence

I ρki = |ui − µk |
I Cluster assignment : clusterindex = argmin

k
(ρki )

I Update centroid : Uk = {ui |(i ∈ clusterindex = k}
I µk = avgconsensus(Uk)

I centroid information exchange

I Flood : (0, . . . , µk , . . . , 0)
I Update : (0, . . . , µk , . . . , 0)← (µ1, . . . , µk , . . . , µK )
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Simulations

Simulations

Parameters
• N = 600
• K= 3
• ε = 0.3
• α = 0.02 as λ−1

N (L) = 0.024
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Figure: Synthetic data of 2-D sensor locations & similarity graph

Gowtham Muniraju (ASU) SSPD 2017 14 / 21



Simulations

Simulations
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Figure: Convergence of nodes to the Fiedler vector by distributed power iteration
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Simulations

Simulations
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Figure: Distributed Spectral clustering vs K-means algorithm for K = 3
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Extensions

Extensions - Local Gaussian Kernel

Convergence of the Fiedler vector is improved by using a local Gaussian
kernel. Let z represent the location co-ordinate (x , y)

Ai,j =

e−
||zi−zj ||

2

σ2 {i , j} ∈ E
0 {i , j} 6∈ E

Figure: Scaling the edges by using a local Gaussian kernel is observed to improve the convergence
characteristics of Fiedler vector
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Extensions

Extensions - DBSCAN

DBSCAN [Ester 1996] instead of K-means
• Input parameter to the algorithm are ε and MinPts
• Criteria : to form a cluster a node has to have MinPts of nodes within ε radius.
• ε can be a value less than communication radius.
• Advantages

I eliminates the input parameter K.
I recognizes outliers.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X co-ordinate

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Y
 c

o
-o

rd
in

a
te

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X co-ordinate

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Y
 c

o
-o

rd
in

a
te

Figure: Using DBSCAN on Fiedler vector has very similar results as kmeans
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Conclusion

Conclusion

Designed and implemented SC in a distributed way without any fusion center
in the network.

Distributed eigenvector computation + Distributed K-means clustering, to
cluster the input dataset into K groups.

All nodes converge to a value in the Fiedler vector of the L

The location information is only used to establish the network topology and
this information is not exchanged in the network.

DSC usually performs better than the K-means algorithm as the eigenvector
of L is a better feature space to cluster than the input dataset.
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Conclusion
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Conclusion
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