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Background

Motivation: Polynomial matrix eigenvalue decomposition (PEVD) algorithms have been shown
to enable a solution to the broadband angle of arrival (AoA) estimation problem.

Aim: Employ low complexity divide-and-conquer approach to the PEVD for AoA estimation and
investigate performance relative to traditional PEVD methods. Simultaneously, quantify the
performance trade-offs for divide-and-conquer algorithm parameters.
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◮ Cross spectral density R(z) =
∑

τ R[τ ]z−τ

is a polynomial matrix.

◮ Parahermitian: R̃(z) = RH(1/z∗) = R(z)

◮ Space-time covariance matrix:
R[τ ] = E

{

x[n]xH[n− τ ]
}

, R[τ ] ∈ C
M×M

◮ Matrix of auto- & cross- correlation
sequences

◮ Symmetry: R[τ ] = R
H[−τ ]
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Spatio-Spectral Polynomial MUSIC

◮ Approximate Polynomial EVD [1]: D(z) ≈ Q̃(z)R(z)Q(z)

◮ Thresholding the polynomial eigenvalues reveals the number of independent broadband
sources R contributing to R(z), and permits a distinction between signal-plus-noise and
noise only subspaces Qs(z) ∈ C

M×R and Qn(z) ∈ C
M×(M−R),

R(z) =
[

Qs(z) Qn(z)
]

[

Ds(z) 0

0 Dn(z)

] [

Q̃s(z)

Q̃n(z)

]

.

◮ R < M , Ds(z) ∈ C
R×R and Dn(z) ∈ C

(M−R)×(M−R).

◮ The spatio-spectral polynomial MUSIC (SSP-MUSIC) algorithm [2] is an extension of
narrowband MUSIC [3] to the broadband case.

◮ SSP-MUSIC algorithm scans the noise-only subspace Qn(z) = [QR+1(z) . . . QM(z)].

◮ The steering vectors of sources that contribute to R(z) will define the signal-plus-noise
subspace Qs(z) and therefore lie in the nullspace of its complement Qn(z).

◮ Vector Q̃n(e
jΩ)Aϑ,ϕ(e

jΩ) is close to the origin if Aϑ,ϕ(e
jΩ) is a steering vector of a

contributing source at frequency Ω, azimuth ϕ, and elevation θ.

◮ The SSP-MUSIC algorithm evaluates the reciprocal of the norm of this vector,

PSSP(ϑ, ϕ, e
jΩ) =

1

Ãϑ,ϕ(z)Qn(z)Q̃n(z)Aϑ,ϕ(z)
|z=ejΩ .

◮ PSSP(ϑ, ϕ, e
jΩ) can determine over which frequency range sources in the direction defined by

the steering vector Aϑ,ϕ(z) are active.

Divide-and-Conquer Sequential Matrix Diagonalisation

◮ Work in [4] describes a divide-and-conquer approach for the PEVD. This algorithm — titled
divide-and-conquer sequential matrix diagonalisation (DC-SMD) — can be utilised to reduce
algorithm complexity and has a framework based on the SMD [5] algorithm.

◮ While traditional PEVD algorithms attempt
to diagonalise an entire M ×M
parahermitian matrix at once, the DC-SMD
algorithm first divides the matrix into a
number of smaller, independent parahermitian
matrices, before diagonalising — or
conquering — each matrix separately.
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◮ An algorithm named sequential matrix segmentation (SMS)
[4] is used to recursively divide R(z) into multiple
independent parahermitian matrices. Each parahermitian
matrix is then diagonalised in sequence through the use of
the SMD algorithm.
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◮ SMS is a novel variant of SMD designed to segment an input
matrix R̂(z) ∈ C

M ′×M ′
into two independent parahermitian

matrices R̂11(z) ∈ C
(M ′−P )×(M ′−P ) and R̂22(z) ∈ C

P×P , and
two matrices R̂12(z) ∈ C

(M ′−P )×P and R̂21(z) ∈ C
P×(M ′−P ),

where R̂12(z) =
˜̂
R21(z) are approximately zero.

◮ SMS iteratively minimises the energy in select
regions of a parahermitian matrix in an attempt to
segment the matrix. SMS operates until a
specified number of iterations have been executed,
or when the energy in the targeted regions falls
below a threshold.

Results

◮ Impact example: broadband angle of arrival estimation with fixed execution time.
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Algorithm Diagonalisation / dB Paraunitary filter length Decomposition error Paraunitarity error

DC-SMD −17.17 297 1.27× 10−5 1.83× 10−3

SBR2 −8.035 221 7.19× 10−9 4.91× 10−5

SMD −12.87 170 1.15× 10−7 1.94× 10−4

◮ Performance trade-offs of DC-SMD for fixed diagonalisation level.
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Conclusions

◮ DC-SMD offers significant AoA estimation and diagonalisation performance gains over
traditional PEVD algorithms for equal execution time.

◮ These benefits come with the disadvantage of increasing the mean squared reconstruction
error, paraunitary filter length, and paraunitarity error.

◮ Through careful choice of DC-SMD input parameters δ, P , and M̂ , a balance can be
obtained between decomposition MSE, algorithm execution time, filter paraunitarity,
paraunitary filter length, and AoA estimation performance.

◮ A further advantage of the DC-SMD algorithm is its ability to produce multiple independent
parahermitian matrices, which may be processed in parallel.
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