CORRELATION BASED CLASSIFICATION OF COMPLEX PRI MODULATION TYPES

Fotios Katsilieris*, Sabine Apfeld, Alexander Charlish

Sensor Data and Information Fusion

Fraunhofer Institute for Communication, Information Processing and Ergonomics (FKIE) Wachtberg, Germany

*Since April 2017 Fotios is with Airbus Defence and Space GmbH

Agenda

1. Introduction

- 2. Problem description
- 3. Proposed solution
- 4. Simulated examples
- 5. Summary & conclusions

Introduction 1/3

- Choice of a radar's pulse repetition interval (PRI) has great influence on target detection and tracking performance
- Interval might be constant:

• Or with some modulation:

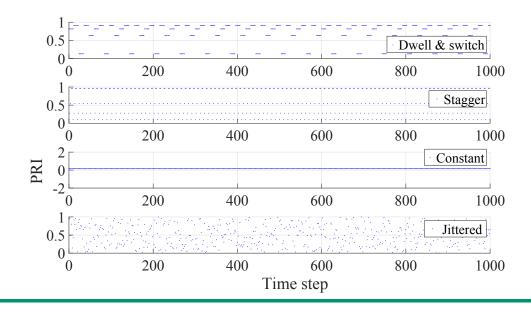
(3-level stagger)

Introduction 1/3

- Choice of a radar's pulse repetition interval (PRI) has great influence on target detection and tracking performance
- Interval might be constant:

• Or with some modulation:

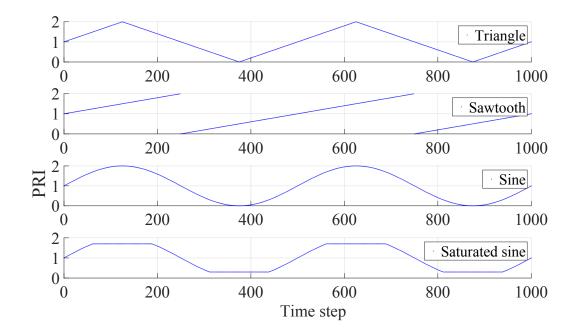
(3-level stagger)



Introduction 2/3

- Classification of pulse repetition interval modulation important for electronic warfare systems:
 - Significant knowledge about the observed emitter
 - Improvement of own electronic warfare system functions
- Literature: Standard PRI modulation types only
 - Dwell & switch, stagger, constant, jittered, complex

Introduction 2/3


- Classification of pulse repetition interval modulation important for electronic warfare systems:
 - Significant knowledge about the observed emitter
 - Improvement of own electronic warfare system functions
- Literature: Standard PRI modulation types only
 - Dwell & switch, stagger, constant, jittered, complex

Introduction 3/3

- Automatic classification of complex PRI modulation sub-types remains unaddressed
 - Common: Triangle, sawtooth, sine, and saturated sine

Problem description 1/2

Consider a scenario where:

- A receiver observes an area of interest and records pulses emitted from different radars
- The received pulses are deinterleaved, i.e sorted by emitter
 - Deinterleaving is a complex topic itself not in scope
 - Effects accounted for by considering spurious and missing pulses

Problem formulation:

Does the received signal exhibit a complex PRI modulation?

If yes, of which sub-type: sawtooth, triangle, sine, or saturated sine?

Problem description 1/2

Consider a scenario where:

- A receiver observes an area of interest and records pulses emitted from different radars
- The received pulses are deinterleaved, i.e sorted by emitter
 - Deinterleaving is a complex topic itself not in scope
 - Effects accounted for by considering spurious and missing pulses

Problem formulation:

Does the received signal exhibit a complex PRI modulation?

If yes, of which sub-type: sawtooth, triangle, sine, or saturated sine?

Problem description 2/2

This is essentially a *multi-class classification* or *multiple hypotheses testing* problem:

- Hypothesis H_1 : class C_1 , i.e. sawtooth modulation
- Hypothesis H_2 : class C_2 , i.e. triangle modulation
- Hypothesis H_3 : class C_3 , i.e. sine modulation
- Hypothesis H_4 : class C_4 , i.e. saturated sine modulation
- Hypothesis H_0 : class C_0 , i.e. none of the above

We desire high probability of correct classification:

$$P_{C}^{j} = P(C^{*} = C_{j} | C_{true} = C_{j}), j = 1, ..., 4$$

and low **probability of misclassification**:

1. Modulation type *j* is classified as some other type

$$P^j_{M-v1}=P(C^*
eq C_j|C_{ ext{true}}=C_j),\ j=1,\dots,4$$

2. Some other modulation types are classified as type *j*

$$P_{M-v2}^{j} = P(C^{*} = C_{j} | C_{true} \neq C_{j}), j = 1, ..., 4$$

Problem description 2/2

This is essentially a *multi-class classification* or *multiple hypotheses testing* problem:

- Hypothesis H_1 : class C_1 , i.e. sawtooth modulation
- Hypothesis H_2 : class C_2 , i.e. triangle modulation
- Hypothesis H_3 : class C_3 , i.e. sine modulation
- Hypothesis H_4 : class C_4 , i.e. saturated sine modulation
- Hypothesis H_0 : class C_0 , i.e. none of the above

We desire high probability of correct classification:

$$P_{C}^{j} = P(C^{*} = C_{j} | C_{true} = C_{j}), \ j = 1, ..., 4$$

and low **probability of misclassification**:

1. Modulation type *j* is classified as some other type

$$P^{j}_{M-v1} = P(C^{*} \neq C_{j} | C_{true} = C_{j}), \ j = 1, ..., 4$$

2. Some other modulation types are classified as type *j*

$$P_{M-v2}^{j} = P(C^{*} = C_{j} | C_{true} \neq C_{j}), j = 1, ..., 4$$

Problem description 2/2

This is essentially a *multi-class classification* or *multiple hypotheses testing* problem:

- Hypothesis H_1 : class C_1 , i.e. sawtooth modulation
- Hypothesis H_2 : class C_2 , i.e. triangle modulation
- Hypothesis H_3 : class C_3 , i.e. sine modulation
- Hypothesis H_4 : class C_4 , i.e. saturated sine modulation
- Hypothesis H_0 : class C_0 , i.e. none of the above

We desire high probability of correct classification:

$$P_{C}^{j} = P(C^{*} = C_{j} | C_{true} = C_{j}), \ j = 1, ..., 4$$

and low probability of misclassification:

1. Modulation type *j* is classified as some other type

$$P_{M-v1}^{j} = P(C^{*} \neq C_{j} | C_{true} = C_{j}), j = 1, ..., 4$$

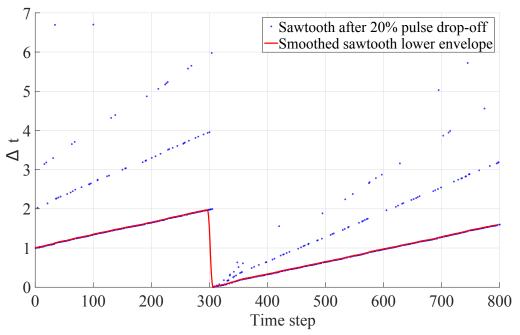
2. Some other modulation types are classified as type j

$$P_{M-v2}^{j} = P(C^{*} = C_{j} | C_{true} \neq C_{j}), j = 1, ..., 4$$

Input: TOA difference of pulses Δt , cross-correlation threshold c_{min} **Output**: Complex modulation type hypothesis decision $H_j : C^* = C_j$, $j \in \{0, 1, 2, 3, 4\}$

2: 3: 4: 5: 6: 7: 8: **if then** 9: 10: **else** 11:

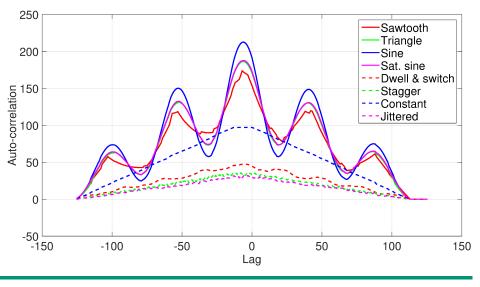
12: end if



Input: TOA difference of pulses Δt , cross-correlation threshold c_{min} **Output**: Complex modulation type hypothesis decision $H_j : C^* = C_j$, $j \in \{0, 1, 2, 3, 4\}$

- 1: evaluate lower envelope of Δt
- 2: smooth the lower envelope of Δt and get $\widehat{\Delta t}$ (red line in Fig.)

Elimination of the effect of lost pulses



Input: TOA difference of pulses Δt , cross-correlation threshold c_{min} **Output**: Complex modulation type hypothesis decision $H_j : C^* = C_j$, $j \in \{0, 1, 2, 3, 4\}$

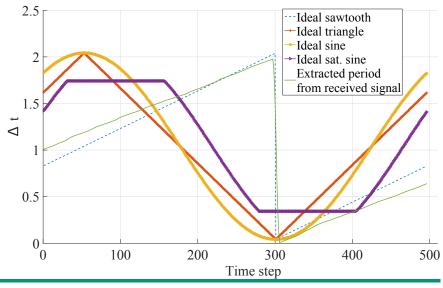
- 1: evaluate lower envelope of Δt
- 2: smooth the lower envelope of Δt and get $\widehat{\Delta t}$ (red line in Fig.)
- 3: evaluate $\left(\widehat{\Delta t} \star \widehat{\Delta t}\right)$, i.e. its autocorrelation
- 4: find the period of Δt using the peaks of $\left(\widehat{\Delta t} \star \widehat{\Delta t}\right)$
 - Complex PRI modulation induces distinct peaks

Input: TOA difference of pulses Δt , cross-correlation threshold c_{min} **Output**: Complex modulation type hypothesis decision $H_j : C^* = C_j$, $j \in \{0, 1, 2, 3, 4\}$

- 1: evaluate lower envelope of Δt
- 2: smooth the lower envelope of Δt and get $\widehat{\Delta t}$ (red line in Fig.)
- 3: evaluate $\left(\widehat{\Delta t} \star \widehat{\Delta t}\right)$, i.e. its autocorrelation
- 4: find the period of Δt using the peaks of $\left(\widehat{\Delta t} \star \widehat{\Delta t}\right)$
- 5: extract a period from Δt

6: create ideal signals Δt_j^* , j = 1, ..., 4

7:


```
8: if then
```

9:

10· else

11:

12: end if

Input: TOA difference of pulses Δt , cross-correlation threshold c_{min} **Output**: Complex modulation type hypothesis decision $H_j : C^* = C_j$, $j \in \{0, 1, 2, 3, 4\}$

- 1: evaluate lower envelope of Δt
- 2: smooth the lower envelope of Δt and get $\widehat{\Delta t}$ (red line in Fig.)
- 3: evaluate $\left(\widehat{\Delta t} \star \widehat{\Delta t}\right)$, i.e. its autocorrelation
- 4: find the period of Δt using the peaks of $\left(\widehat{\Delta t} \star \widehat{\Delta t}\right)$
- 5: extract a period from Δt 6: create ideal signals Δt_i^* , j = 1, ..., 42.5 Ideal sawtooth Ideal triangle 7: find $j^* = \arg \max_j \left[\left(\widehat{\Delta t} \star \Delta t_j^* \right) \right]$, j = 1, ..., 4Ideal sine -Ideal sat. sine Extracted period from received signal 8: if $\left(\widehat{\Delta t} \star \Delta t_{j^*}^*\right) > c_{min}$ then 1.5 Δ t choose hypothesis $H_{i^*}: C^* = C_{i^*}$ 9: 10: **else** choose hypothesis H_0 : $C^* = C_0$ 0.5 11: 12: end if 0 0 100 200 300 400 500 Time step

Simple example 1: Favourable case

In this case we assume very reliable prior information:

- Normalized cross-correlation threshold c_{min} = 0.8
- Duration of the emitted signal D = 200 time units
- We sample 1.8 periods of the signal
- Drop-out ratio of 10%, i.e. 10% of the emitted pulses are lost
- Saturation of sat. sine is known to be 0.7

PRI mod.	Pc	P _{M-v1}	P _{M-v2}	PRI mod.	Pc	P _{M-v1}	P_{M-v2}
Sawtooth	0.96	0.01	0.0001	Dwell & switch	N/A	0.001	N/A
Triangle	0.88	0.12	0.22	Stagger	N/A	0	N/A
Sine	0.83	0.17	0.11	Constant	N/A	0	N/A
Sat. sine	0.84	0.16	0.09	Jittered	N/A	0.0003	N/A

Simple example 2: Unfavourable case 1

In this case we assume reliable prior information but more pulses are lost:

- Normalized cross-correlation threshold $c_{min} = 0.8$
- Duration of the emitted signal D = 200 time units
- We sample 1.8 periods of the signal
- Drop-out ratio of 20%, i.e. 20% of the emitted pulses are lost
- Saturation of sat. sine is known to be 0.7

PRI mod.	Pc	P _{M-v1}	P _{M-v2}	PRI mod.	Pc	P _{M-v1}	P_{M-v2}
Sawtooth	0.9	0.05	0.0001	Dwell & switch	N/A	0.007	N/A
Triangle	0.64	0.36	0.25	Stagger	N/A	0.0008	N/A
Sine	0.79	0.2	0.34	Constant	N/A	0	N/A
Sat. sine	0.6	0.4	0.22	Jittered	N/A	0.003	N/A

Simple example 3: Unfavourable case 2

In this case we assume **unreliable** prior information:

- Normalized cross-correlation threshold c_{min} = 0.8
- Duration of the emitted signal D = 100 time units
- We sample **1.5 periods** of the signal
- Drop-out ratio of 20%, i.e. 20% of the emitted pulses are lost
- Saturation of ideal sat. sine is 0.8 instead of the true value 0.7

PRI mod.	Pc	P _{M-v1}	P_{M-v2}	PRI mod.	Pc	P _{M-v1}	P _{M-v2}
Sawtooth	0.9	0.07	0.03	Dwell & switch	N/A	0.02	N/A
Triangle	0.06	0.94	0.02	Stagger	N/A	0.002	N/A
Sine	0.06	0.94	0.11	Constant	N/A	0	N/A
Sat. sine	0.9	0.09	0.95	Jittered	N/A	0.02	N/A

In depth look into the performance

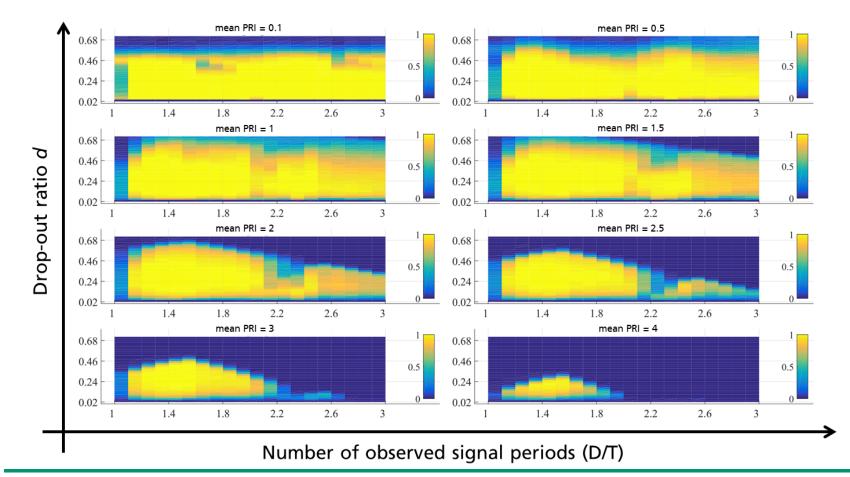
The following settings were used:

- Normalized cross-correlation threshold $c_{min} = 0.8$
- Duration of the emitted signal D = 1000 time units
- Mean **pulse repetition interval** *PRI* ∈ {0.1, 0.25, 0.5, ..., 3, 3.5, 4} time units
 - Higher value means less pulses emitted in the same time
- Number of observed signal periods $D/T \in \{1, 1.1, 1.2, ..., 3\}$
 - Ratio of emitted signal duration D and signal period T
 - Higher value means less pulses per period in the same observation time

In depth look into the performance

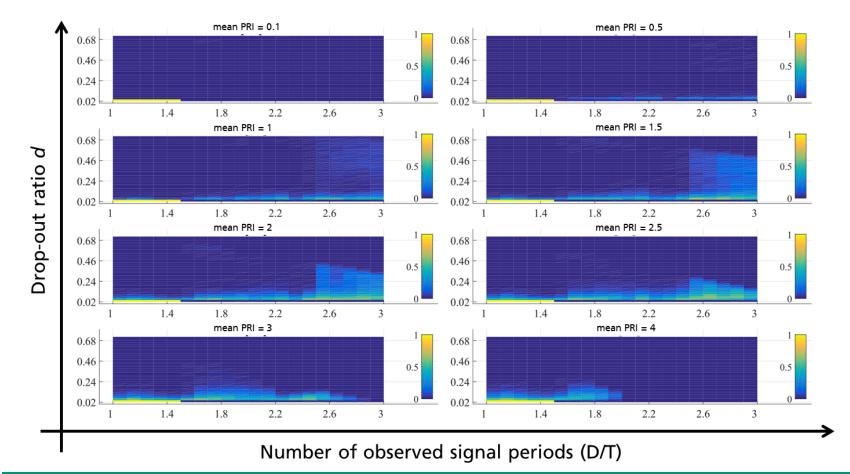
The following settings were used:

- **Drop-out ratio** $d \in \{0, 0.02, 0.2, ..., 0.7\}$
- 1000 Monte Carlo runs
- Pulses randomly dropped at each run based on the drop-out ratio

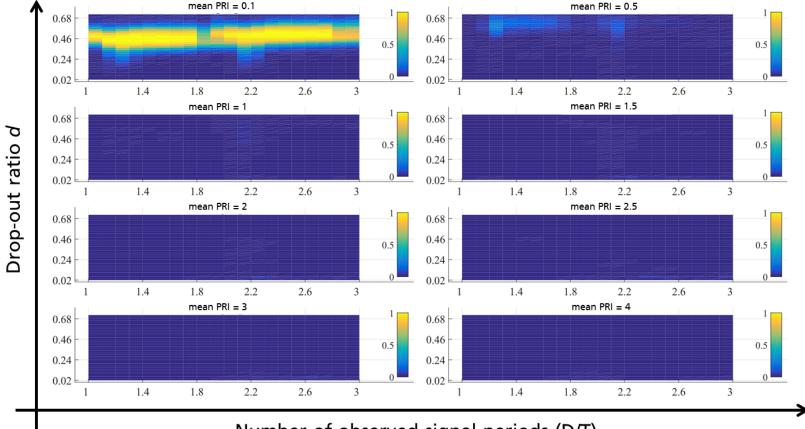

We examine the:

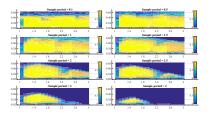
- Probability of correct classification
- Both definitions of the probability of misclassification

Example: Sawtooth PRI modulation


Very high **probability of correct classification** P_C over a broad range of signal reception settings.

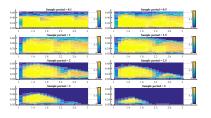
Example: Sawtooth PRI modulation


Very low probability that sawtooth is classified as another complex modulation type P_{M-v1} over a broad range of signal reception settings.

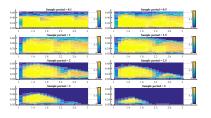


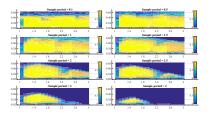
Example: Sawtooth PRI modulation

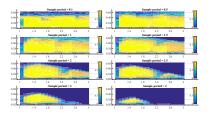
Very low probability that other modulation types are classified as sawtooth P_{M-v2} over a broad range of signal reception settings.

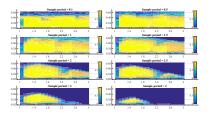


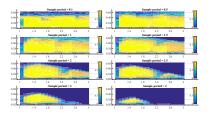
Sawtooth modulation correctly classified in almost all cases


- Non-complex PRI modulations practically never identified as complex
- Most false classifications of triangle and sine are due to confusion with saturated sine
- Crucial part: Reliable extraction of the lower envelope of the received signal
 - Lower envelope should resemble one of the ideal complex modulation types
 - At least 1.2 periods should be observed
- Best performance for: D/T ∈ {1.2, ..., 2}, meanPRI ∈ {0.1, ..., 2}, d ∈ {0.02, ..., 0.46}
- Prior information about the received signal crucial for its correct classification
 - Knowledge about the signal period can be used for adapting the observation duration
- Significant pulse drop-out ratios can be tolerated
 - Up to 50% under some favourable conditions

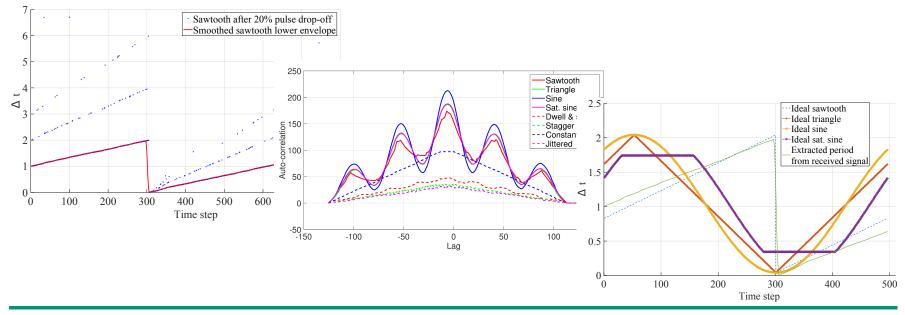

- Sawtooth modulation correctly classified in almost all cases
- Non-complex PRI modulations practically never identified as complex
- Most false classifications of triangle and sine are due to confusion with saturated sine
- Crucial part: Reliable extraction of the lower envelope of the received signal
 - Lower envelope should resemble one of the ideal complex modulation types
 - At least 1.2 periods should be observed
- Best performance for: D/T ∈ {1.2, ..., 2}, meanPRI ∈ {0.1, ..., 2}, d ∈ {0.02, ..., 0.46}
- Prior information about the received signal crucial for its correct classification
 - Knowledge about the signal period can be used for adapting the observation duration
- Significant pulse drop-out ratios can be tolerated
 - Up to 50% under some favourable conditions


- Sawtooth modulation correctly classified in almost all cases
- Non-complex PRI modulations practically never identified as complex
- Most false classifications of triangle and sine are due to confusion with saturated sine
- Crucial part: Reliable extraction of the lower envelope of the received signal
 - Lower envelope should resemble one of the ideal complex modulation types
 - At least 1.2 periods should be observed
- Best performance for: D/T ∈ {1.2, ..., 2}, meanPRI ∈ {0.1, ..., 2}, d ∈ {0.02, ..., 0.46}
- Prior information about the received signal crucial for its correct classification
 - Knowledge about the signal period can be used for adapting the observation duration
- Significant pulse drop-out ratios can be tolerated
 - Up to 50% under some favourable conditions

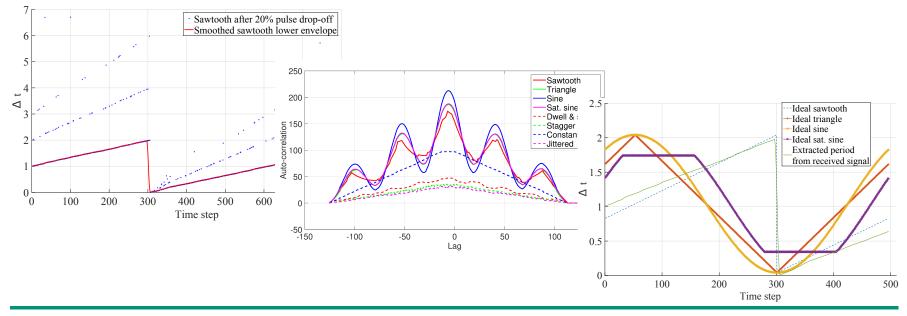

- Sawtooth modulation correctly classified in almost all cases
- Non-complex PRI modulations practically never identified as complex
- Most false classifications of triangle and sine are due to confusion with saturated sine
- Crucial part: Reliable extraction of the lower envelope of the received signal
 - Lower envelope should resemble one of the ideal complex modulation types
 - At least 1.2 periods should be observed
- Best performance for: D/T ∈ {1.2, ..., 2}, meanPRI ∈ {0.1, ..., 2}, d ∈ {0.02, ..., 0.46}
- Prior information about the received signal crucial for its correct classification
 - Knowledge about the signal period can be used for adapting the observation duration
- Significant pulse drop-out ratios can be tolerated
 - Up to 50% under some favourable conditions


- Sawtooth modulation correctly classified in almost all cases
- Non-complex PRI modulations practically never identified as complex
- Most false classifications of triangle and sine are due to confusion with saturated sine
- Crucial part: Reliable extraction of the lower envelope of the received signal
 - Lower envelope should resemble one of the ideal complex modulation types
 - At least 1.2 periods should be observed
- Best performance for: D/T ∈ {1.2, ..., 2}, meanPRI ∈ {0.1, ..., 2}, d ∈ {0.02, ..., 0.46}
- Prior information about the received signal crucial for its correct classification
 - Knowledge about the signal period can be used for adapting the observation duration
- Significant pulse drop-out ratios can be tolerated
 - Up to 50% under some favourable conditions

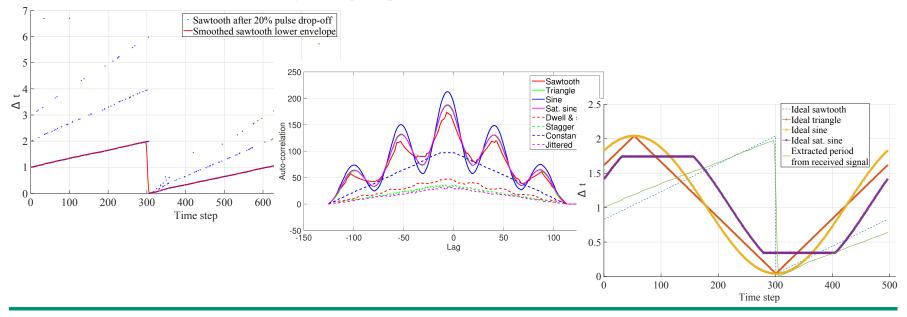
- Sawtooth modulation correctly classified in almost all cases
- Non-complex PRI modulations practically never identified as complex
- Most false classifications of triangle and sine are due to confusion with saturated sine
- Crucial part: Reliable extraction of the lower envelope of the received signal
 - Lower envelope should resemble one of the ideal complex modulation types
 - At least 1.2 periods should be observed
- Best performance for: D/T ∈ {1.2, ..., 2}, meanPRI ∈ {0.1, ..., 2}, d ∈ {0.02, ..., 0.46}
- Prior information about the received signal crucial for its correct classification
 - Knowledge about the signal period can be used for adapting the observation duration
- Significant pulse drop-out ratios can be tolerated
 - Up to 50% under some favourable conditions



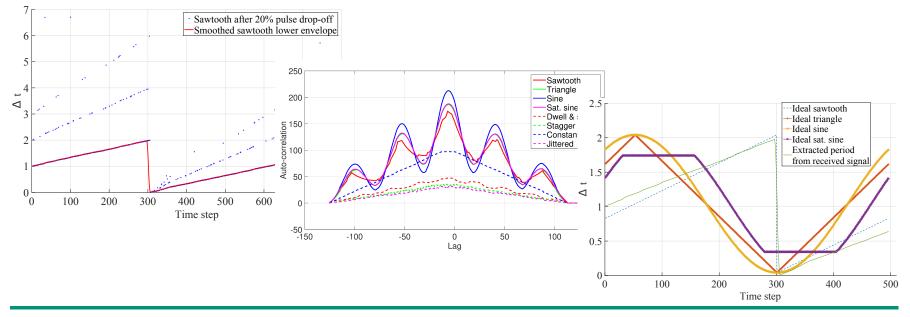
- Sawtooth modulation correctly classified in almost all cases
- Non-complex PRI modulations practically never identified as complex
- Most false classifications of triangle and sine are due to confusion with saturated sine
- Crucial part: Reliable extraction of the lower envelope of the received signal
 - Lower envelope should resemble one of the ideal complex modulation types
 - At least 1.2 periods should be observed
- Best performance for: D/T ∈ {1.2, ..., 2}, meanPRI ∈ {0.1, ..., 2}, d ∈ {0.02, ..., 0.46}
- Prior information about the received signal crucial for its correct classification
 - Knowledge about the signal period can be used for adapting the observation duration
- Significant pulse drop-out ratios can be tolerated
 - Up to 50% under some favourable conditions

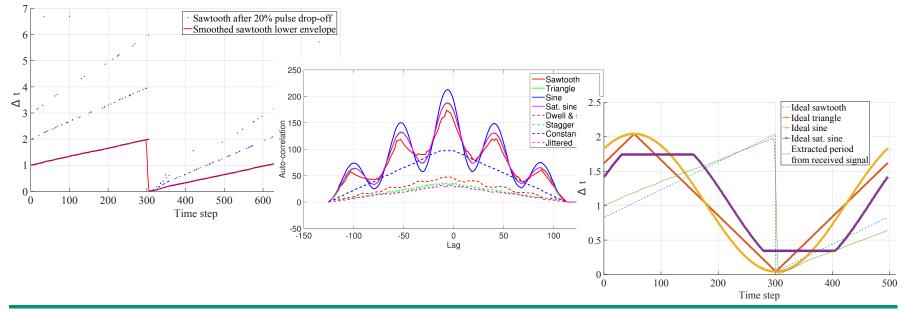


- First algorithm in the open literature that classifies complex PRI modulation types
- Classification of complex PRI modulation with good statistics under varying signal reception conditions
- Information from an emitter database plays a crucial role
- Almost complete rejection of signals having non-complex PRI modulation
- Low computational complexity algorithm



- First algorithm in the open literature that classifies complex PRI modulation types
- Classification of complex PRI modulation with good statistics under varying signal reception conditions
- Information from an emitter database plays a crucial role
- Almost complete rejection of signals having non-complex PRI modulation
- Low computational complexity algorithm


- First algorithm in the open literature that classifies complex PRI modulation types
- Classification of complex PRI modulation with good statistics under varying signal reception conditions
- Information from an emitter database plays a crucial role
- Almost complete rejection of signals having non-complex PRI modulation
- Low computational complexity algorithm


- First algorithm in the open literature that classifies complex PRI modulation types
- Classification of complex PRI modulation with good statistics under varying signal reception conditions
- Information from an emitter database plays a crucial role
- Almost complete rejection of signals having non-complex PRI modulation

- First algorithm in the open literature that classifies complex PRI modulation types
- Classification of complex PRI modulation with good statistics under varying signal reception conditions
- Information from an emitter database plays a crucial role
- Almost complete rejection of signals having non-complex PRI modulation
- Low computational complexity algorithm

Thank you for your attention!

Fotios Katsilieris, Sabine Apfeld, Alexander Charlish

e-mail: Fotios.Katsilieris@airbus.com

{Sabine.Apfeld, Alexander.Charlish} @fkie.fraunhofer.de

