

Sensor Management with Regional Statistics $${\rm for\ the\ PHD\ Filter}$$

Marian Andrecki, Emmanuel D. Delande, Jérémie Houssineau, and Daniel E. Clark {ma804, E.D.Delande, J.Houssineau, D.E.Clark}@hw.ac.uk

Engineering & Physical Sciences Heriot-Watt University Edinburgh, UK

September 9, 2015 @ Edinburgh, United Kingdom

Introduction	Population tracking	Management policy	Experiments	Conclusions
000	00	00	0000000	

1 Introduction

- 2 Population tracking
- **3** Management policy

4 Experiments

5 Conclusions

Introduction	Population tracking	Management policy	Experiments	Conclusions
000	00	00	0000000	0
T 1	1			
I ne rese.	arcn			

Multi-Object Tracking and Sensor Management

- Estimate state of targets in surveillance zone
- Control a configurable sensor (mobility, different modes of operation)
- Find suitable policy for the operator to follow (e.g. maximise number of targets in sight)
- Can be used airspace monitoring, border surveillance, etc.

Introduction	Population tracking	Management policy	Experiments	Conclusions
000	00	00	0000000	0
The research	arch			

Multi-Object Tracking and Sensor Management

- Estimate state of targets in surveillance zone
- Control a configurable sensor (mobility, different modes of operation)
- Find suitable policy for the operator to follow (e.g. maximise number of targets in sight)
- Can be used airspace monitoring, border surveillance, etc.

Goals

- Explore second order statistics in PHD filter for Sensor Management purposes
- Consider the behaviour of the variance-based sensor manager and its biases
- Prepare for study of advanced filters with Sensor Management

Introduction	Population tracking	Management policy	Experiments	Conclusions
●○○		00	00000000	O
The resea	ırch			

Multi-Object Tracking and Sensor Management

- Estimate state of targets in surveillance zone
- Control a configurable sensor (mobility, different modes of operation)
- Find suitable policy for the operator to follow (e.g. maximise number of targets in sight)
- Can be used airspace monitoring, border surveillance, etc.

Goals

- Explore second order statistics in PHD filter for Sensor Management purposes
- Consider the behaviour of the variance-based sensor manager and its biases
- Prepare for study of advanced filters with Sensor Management

As this is initial analysis of the algorithms all experiments were conducted in simulation

Introduction	Population tracking	Management policy	Experiments	Conclusions
000	00	00	0000000	0
Demonst	ration			
Demonst	lation			

Scenario

- Groups of targets arrive from the West objects move with near-constant velocity
- Scene is a 2D plane with three regions of interest
- Estimate number of targets in each of the regions of interest at every time step
- Sensor can scan only one of the regions at a time
- Where to sense at each step?
- Range and bearing measurements are distorted by Gaussian noise
- Missed detections and false alarms are possible

Introduction	Population tracking	Management policy	Experiments	Conclusions
○○●		00	00000000	O
Scene				

Introduction 000	Population tracking ●○	Management policy 00	Experiments 00000000	Conclusions O
Due hee hills		Namatina Cilian		
Probabili	ty Hypothesis L	Pensity fliter		

- Recursive Bayesian filter that captures statitics of populations
- Propagates mean density of targets in state space

Introduction 000	Population tracking ●○	Management policy 00	Experiments 00000000	Conclusions O
Due hee hills		Namatina Cilian		
Probabili	ty Hypothesis L	Pensity fliter		

- Recursive Bayesian filter that captures statitics of populations
- Propagates mean density of targets in state space

- At some stage filtering assumes density of targets is Poisson distributed ⇒ propagated variance is equal to the mean
- Accounts for missed detections and false positives
- Gaussian Mixtures implementation was used

- After update step one can compute variance in the number of targets in a given region
- Provides error bars on the estimated number targets in a given region

- After update step one can compute variance in the number of targets in a given region
- Provides error bars on the estimated number targets in a given region

- How certain one is that a measurement does or does not correspond to an object inside of a specific region
- This variance cannot be propagated recursively in PHD filter

Introduction	Population tracking	Management policy	Experiments	Conclusions
000	00	•0	0000000	0
N /	. <u>P</u>			
ivianager	nent policy			

User's goal

Estimate number of objects in some regions as well as possible

Manager's goal

 Minimise the total regional variance across the three regions (i.e. keep the error bars on the number of objects as small as possible)

Policy

- Sense in the region with the *highest* variance, (i.e. where uncertainty is the highest)
- Computationally inexpensive

Introduction	Population tracking	Management policy ⊙●	Experiments 00000000	Conclusions O
	1			
Stimulati	ng exploration			

Injecting variance

- We can now implicitly tell the manager to sense more in the leftmost region by injecting high variance into the scene.
- You really don't know what's going on there.'
- It is important to propagate this variance so that it accumulates when manager does not scan the region.

Biasing the mean

- In the PHD filter the variance is tied to the mean, so changing one affects the other.
- Solution to this is using a filter which propagates higher order statistics of population (e.g. HISP, DISP)
- Alternatively, point processes which offer variance higher than mean can be used (e.g. Negative Binomial point process)

Introduction	Population tracking	Management policy 00	Experiments •0000000	Conclusions O
Experime	nts			

Introduction	Population tracking	Management policy	Experiments	Conclusions
000		00	0000000	O
Simulation				

Previously shown scenario was used

- Targets arriving from the West
- Three regions of interest
- Manager was implicitly informed about where the objects were coming from

Parameters varied

- Pattern of arrival of the targets (single wave, multiple waves)
- Quality of the sensor distortion of measurements, probability of detection and false alarm
- Amount of variance injected

Variance minimising manager was compared to naive sequentially swiping manager

Introduction 000	Population tracking	Management policy 00	Experiments 0000000	Conclusions O
Pattern d	of arrival			

Single wave of targets

Introduction	Population tracking	Management policy	Experiments	Conclusions
000	00	00	0000000	0
Dattorn o	farrival			
гашет с	JI affival			

Single wave of targets

- Variance minimising manager outperforms the naive one
- It is clear where to sense
- Naive swiping manager wastes scans by looking into empty regions

Introduction	Population tracking	Management policy	Experiments	Conclusions
000	00	00	0000000	0
Dattorn o	farrival			
гашет с	JI affival			

Single wave of targets

- Variance minimising manager outperforms the naive one
- It is clear where to sense
- Naive swiping manager wastes scans by looking into empty regions

Multiple waves of targets

- Variance minimising manager only slightly outperforms the naive one
- Important to balance exploration and exploitation

Introduction	Population tracking	Management policy 00	Experiments 0000●000	Conclusions O
Quality o	f the sensor			

Introduction	Population tracking	Management policy	Experiments	Conclusions
000		00	00000000	O
Quality o	f the sensor			

Resilience to overestimation

- False positives contribute to higher variance in a region
- Manager chooses to scan the regions with heightened variance and corrects its belief

Introduction	Population tracking	Management policy	Experiments	Conclusions
000		00	00000000	O
Quality o	f the sensor			

Resilience to overestimation

- False positives contribute to higher variance in a region
- Manager chooses to scan the regions with heightened variance and corrects its belief

Overall performance

- Improvement in estimate for low quality sensor (e.g. $P_d = 0.6$) even for multiple waves of targets
- When information is scarce it is more important to choose regions for scanning wisely

Introduction	Population tracking	Management policy	Experiments	Conclusions
000	00	00	00000000	0
Amagunt	of variance inic.	stad		

Amount of variance injected

Managers with different levels of injected variance

Introduction	Population tracking	Management policy	Experiments	Conclusions
000		00	0000000	O
Amount of	variance injec	cted		

- Too low variance level manager does not explore enough and misses waves
- Too high variance level manager focuses on exploration too much and has no time to converge on the targets

Introduction	Population tracking	Management policy	Experiments	Conclusions
000	00	00	0000000	•

Conclusions

- Injecting variance leads to biasing the estimate in case of the PHD filter
- Tuning the value of injected variance is required to balance exploration and exploitation
- Higher order statitics driven sensor manager can lead to performance improvements in the PHD filter

Further work

- Implement the manager for a filter that propagates higher order statistics of the population (e.g. HISP)
- Explore new statistical models for populations with variance higher than the mean (e.g. Negative Binomial point process)