# GPU-Accelerated Gaussian Processes for Object Detection

Calum Blair\*, John Thompson\*, Neil Robertson† \*Institute for Digital Communications, University of Edinburgh †Institute for Sensors, Signals and Systems, Heriot-Watt University

> SSPD 2015 9th September 2015

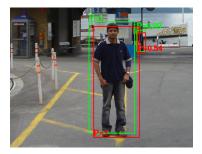


#### Contents

- Introduction & Motivation
- Method
  - Related Work
  - Gaussian Processes and Inference
  - GPU Acceleration
- Results
- Summary



## Motivation





Pedestrian or object detection in images with realistic confidence measures†

†Blair, Thompson, Robertson, Introspective Classification for Pedestrian Detection, SSPD 2014

## Object detection in Sonar (SAS) imagery\*

\*Blair, Thompson, Robertson, *Identifying Anomalous Objects in SAS Imagery Using Uncertainty*, Fusion 2015

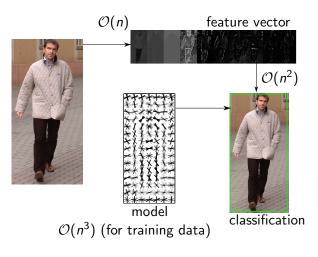


#### Goals

Reliable and fast object detection: use Gaussian Processes as complete or final-stage classifier. Use support vector machines **(SVMs)** as baseline. GPU acceleration needed.



## **Classification Algorithm Structure**





#### Gaussian process Classifiers (GPCs)

Given training data **X** and matching labels  $\mathbf{y} \in \{0, 1\}$ , do parameter learning. Perform probabilistic prediction  $p(y = +1|\mathbf{x}_*)$  of new data sample  $\mathbf{x}_*$ .

**Stage 1**: define latent functions f(x) as Gaussian distribution:  $\mathcal{N}(\mu(x), k(\mathbf{X}, \mathbf{x}_*))$ . Covariance function k can be linear:

$$k(x_i, x_j) = \sigma \mathbf{x_i} \cdot \mathbf{x_j}.$$
 (1)

or squared-error:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \sigma \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_j)^2}{2\ell^2}\right).$$
 (2)

where  $\sigma$  ,  $\ell$  learned during training.



#### Classifier algorithm

Estimate distribution of  $f_*$  which best fits  $\mathbf{x}_*$ :

$$p(f_*|\mathbf{X},\mathbf{y},\mathbf{x}_*) = \int p(f_*|\mathbf{X},\mathbf{x}_*,\mathbf{f}) p(\mathbf{f}|\mathbf{X},\mathbf{y}) d\mathbf{f}.$$
 (3)

given **f** is the distribution of the latent function over **X**. **Stage 2**: 'squash'  $f_*$  using sigmoid with output range [0, 1]:

$$\sigma(x) = \frac{1}{(1 + \exp(-f(x)))}.$$
 (4)

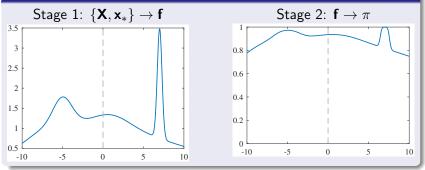
Final class membership probability  $\pi$ :

$$\pi \triangleq p(y = +1 | \mathbf{X}, \mathbf{y}, \mathbf{x}_*) = \int \sigma(f_*) p(f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_*) df_* .$$
 (5)

training process is  $\mathcal{O}(n^3)$ , while testing is  $\mathcal{O}(n^2)$ .



#### Graphical Interpretation





## Baseline Algorithm

#### Support Vector Machine Comparison

Test equation:

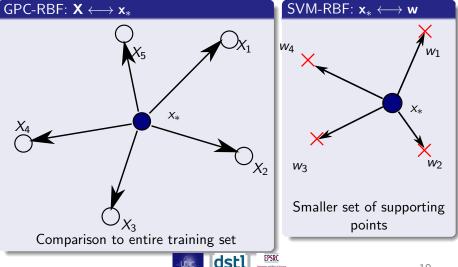
$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i K(\mathbf{x}, \mathbf{w}_i) + b$$
(6)

 $\alpha$ , **w** and *b* learned during training. Use radial basis function (RBF) kernel: same as (2) above.

Difference with GPCs:  ${\bm w}$  is condensed model of training data, but  ${\bm X}$  is all samples seen.



## Graphical Interpretation



#### Accelerating Matrix Computations

**LAPACK** (Linear Algebra Package) standard library. Uses **BLAS** (Basic Linear Algebra Subprograms): vector, matrix and vector-matrix algorithms for multiplication and linear equations.

Highly optimised versions (tweak order of operations and cache contents), available for **Intel x86** (MKL, gotoBLAS, ...) and NVIDIA CUDA **GPU** (cuBLAS, MAGMA, nvBLAS).

MATLAB/ Numpy etc. make BLAS calls:  $C = AB \rightarrow$ 

 $C = \operatorname{sgemm}(A, B)$ 

single-precision, general matrix-matrix multiply



#### **BLAS** Limitations

Must reformulate high-level operations to match available subroutines:

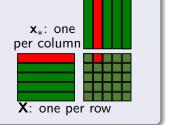
$$\exp\left(-\frac{(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{j}})^2}{2\ell^2}\right) \tag{7}$$

expands to:

$$(\mathbf{x}_i - \mathbf{x}_j)^2 = \mathbf{x}_i^2 + \mathbf{x}_j^2 - 2\mathbf{x}_i\mathbf{x}_j.$$
(8)

3 separate calls, 3 separate data accesses: problem when A, B are  $\rightarrow 1GB$ . GPU model: limited memory, latency dominates. Here, **X** (training samples) is huge.

Now describe modification of GPC algorithm.





#### Inference

Goal: find  $\pi$  in (5) via predictive mean  $\mathbb{E}[\mathbf{f}_*|\mathbf{X}, \mathbf{y}, \mathbf{x}_*]$  and predictive variance  $\mathbb{V}[\mathbf{f}_*|\mathbf{X}, \mathbf{y}, \mathbf{x}_*]^{\dagger}$ .

Training and test covariances form part of larger matrix:

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left( \mathbf{0}, \begin{bmatrix} \mathcal{K}(\mathbf{X}, \mathbf{X}) & \mathcal{K}(\mathbf{X}, \mathbf{x}_*) \\ \mathcal{K}(\mathbf{x}_*, \mathbf{X}) & \mathcal{K}(\mathbf{x}_*, \mathbf{x}_*) \end{bmatrix} \right)$$
(9)

$$K(\mathbf{X}, \mathbf{X})$$
 $K(\mathbf{X}, \mathbf{x}_*)$  $K(\mathbf{x}_*, \mathbf{X})$  $K(\mathbf{x}_*, \mathbf{x}_*)$ 

Define  $K_X$  as  $K(\mathbf{X}, \mathbf{X})$ ,  $K_{X*}$  as  $K(\mathbf{X}, \mathbf{x}_*)$  and  $K_*$  as  $K(\mathbf{x}_*, \mathbf{x}_*)$ . Write a conditional Gaussian on (9) as:

$$\mathbf{f}_*|\mathbf{X},\mathbf{x}_*,\mathbf{f}\sim\mathcal{N}(\mathcal{K}(\mathbf{x}_*,\mathbf{X})\mathcal{K}_X^{-1}\mathbf{f},\mathcal{K}_*-\mathcal{K}(\mathbf{x}_*,\mathbf{X})\mathcal{K}_X^{-1},\mathcal{K}_{X*}) \quad (10)$$

Now have one term in  $f_*$ -expression. †Ch.3, Rasmussen & Williams, Gaussian Processes for Machine Learning (2006).



## Abridged Maths

Approximate posterior term with a Gaussian and:

$$p(\mathbf{f}|\mathbf{X},\mathbf{y}) \approx q(\mathbf{f}|\mathbf{X},\mathbf{y}) = \mathcal{N}(\mathbf{\hat{f}},A^{-1})$$
 (11)

Obtain predictive mean as:

$$\mathbb{E}_{q}[\mathbf{f}_{*}|\mathbf{X},\mathbf{y},\mathbf{x}_{*}] = \mathcal{K}_{X*}^{\mathsf{T}} \nabla \log p(\mathbf{y}|\mathbf{\hat{f}}).$$
(12)

Define predictive variance as:

$$\mathbb{V}_{q}[\mathbf{f}_{*}|\mathbf{X},\mathbf{y},\mathbf{x}_{*}] = K_{*} - K_{X*}^{\mathsf{T}}(K_{X} + W^{-1})^{-1}K_{X*}, \quad (13)$$

Using  $W \triangleq -\nabla \nabla \log(p(\mathbf{y}|\mathbf{f}))$ ,  $\mathbf{L} = \text{cholesky}(I + W^{\frac{1}{2}}K_XW^{\frac{1}{2}})$ , and  $\mathbf{v} = \mathbf{L} \setminus (W^{\frac{1}{2}}K_{X*})$ , simplify to:

$$\mathbb{V}_{q}[\mathbf{f}_{*}|\mathbf{X},\mathbf{y},\mathbf{x}_{*}] = \mathcal{K}_{*} - \mathbf{v}^{\mathsf{T}}\mathbf{v}$$
(14)

See paper for complete derivations



## Probabilistic Prediction: Full algorithm

**Require:** 
$$\mathbf{X}, \mathbf{x}_*, \mathbf{y}, \mathbf{\hat{f}}, W, L$$
, kernel function  $k(x_i, x_j)$   
1:  $K_{X*} = K(\mathbf{X}, \mathbf{x}_*) \blacktriangleright$   
2:  $K_* = K(\mathbf{x}_*, \mathbf{x}_*) \blacktriangleright$   
3:  $\mathbb{E}_q[f_*|X, \mathbf{y}, \mathbf{x}_*] = K_{X*}^{\mathsf{T}} \nabla \log(p(\mathbf{y}|\mathbf{\hat{f}})) //$  latent mean  
4:  $\mathbf{v} = L \setminus (W^{\frac{1}{2}} K_{X*}) \blacktriangleright$   
5:  $\mathbb{V}_q[f_*|X, \mathbf{y}, \mathbf{x}_*] = K_* - \mathbf{v}^{\mathsf{T}} \mathbf{v} //$  latent variance  
6:  $\bar{\pi}_* = \int \sigma(z) \mathcal{N}(z | \mathbb{E}_q[f_*], \mathbb{V}_q[f_*]) dz //$  prediction  
7: return  $\bar{\pi}$ 

Figure: Calculate  $\pi$  at test time. Compute-heavy lines marked with  $\blacktriangleright$ .



$$K(\mathbf{X}, \mathbf{X})$$
 $K(\mathbf{X}, \mathbf{x}_*)$  $K(\mathbf{x}_*, \mathbf{X})$  $K(\mathbf{x}_*, \mathbf{x}_*)$ 

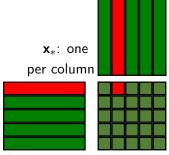
#### Optimisation

Each sample has  $d\sim$  5000. Same block-level data reused for  $\sim$  100 sliding windows in image.



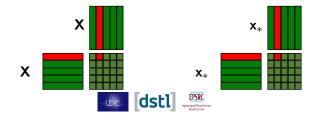


## **Optimised Matrix Multiplication**



X: one per row

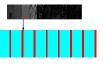
C = AB: load tiles of A and Binto fast memory. (Existing work optimised tile sizes via automated parameter exploration.) For  $K_{X*}$  and  $K_X$ ,  $A = \mathbf{X}$ ; usual matrix structure, one sample per row, no overlap.



#### Improvements

When *B* is  $\mathbf{x}_*$ : densely packed; instead of one row per window, re-use nearby data already in fast shared memory.

Time to access A and C (the resulting  $K_{X*}$  matrix) dominates. Big reductions in time & memory consumption. Further improvements from instruction level parallelism. **x**<sub>\*</sub>: stride over packed data





X: one per row



#### Results

- Timing: test processing speed on single image
- Accuracy: test on large dataset



## Timing

| Algorithm | Processor | Implementation | Time(s) | Speedup    |
|-----------|-----------|----------------|---------|------------|
| GPC       | CPU       | MATLAB BLAS    | 10.28   |            |
| GPC       | GPU       | GPGPGPU        | 2.77    | 3.7×       |
| SVM       | CPU       | LIBSVM         | 66.92   |            |
| SVM       | GPU       | cuSVM          | 1.74    | 38.5 	imes |

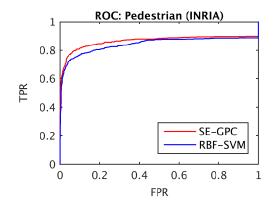
Matrix multiplication stage for  $640 \times 480$  image on CPU (12-core Intel Xeon X5650, 2.67GHz ) and GPU (NVIDIA GeForce GTX 680, 1536 cores, 2GB RAM).

cuSVM implementation is faster as SVM needs fewer support vectors ( $\sim$ 3000 vs  $\sim$ 14000 GPC training vectors).



Intro Method Results Summary

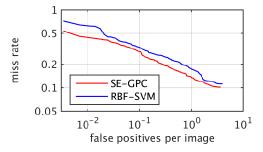
## **Receiver Operating Characteristic**





Intro Method Results Summary

## Detection Error Tradeoff





## **Reliability Diagram**

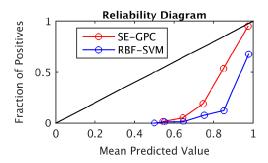


Figure: GPC and SVM Reliability; classifiers closer to black line are more reliable.



#### Conclusion

GPC compared to baseline SVM: similar speed but gain in reliability.

Best case is 3.7  $\times$  speedup compared to an optimised implementation on CPU.

Improvements usually possible even over heavily optimised initial code, when matched to application.

Code available for download<sup>†</sup>.

Questions?

thttp://homepages.ed.ac.uk/cblair2/



## Appendix



**Require:** X, y, f, kernel function  $k(x_i, x_j)$ 1:  $\hat{\mathbf{f}} \triangleq \mathbb{E}_q[\mathbf{f}, \mathbf{X}, \mathbf{y}] = \operatorname{argmax}_{\mathbf{f}} p(\mathbf{f} | \mathbf{X}, \mathbf{y}) // \text{Using Newton's method}$ 2:  $K_X = K(\mathbf{X}, \mathbf{X})$ 3:  $W = -\nabla \nabla \log(p(\mathbf{y} | \hat{\mathbf{f}}))$ 4:  $L = \operatorname{cholesky}(I + W^{\frac{1}{2}}KW^{\frac{1}{2}})$ 5: return  $W, L, \hat{\mathbf{f}}, K_X$ 

Figure: Prepare training posterior. This only needs to be done once and can be re-used during testing.



Bibliography

## Derivation of Mean

Laplacian approximation: treat posterior over the training data and labels in our  $f_*$  term (3) as a Gaussian:

$$p(\mathbf{f}|\mathbf{X},\mathbf{y}) \approx q(\mathbf{f}|\mathbf{X},\mathbf{y}) = \mathcal{N}(\mathbf{\hat{f}},A^{-1}),$$
 (15)

where

$$\hat{\mathbf{f}} = \arg \max_{\mathbf{f}} \rho(\mathbf{f} | \mathbf{X}, \mathbf{y}), \qquad (16)$$

and (where  $\nabla$  represents differentiation):

$$A = -\nabla \nabla \log(\rho(\mathbf{f}|\mathbf{X}, \mathbf{y})|_{\mathbf{f}=\hat{\mathbf{f}}}.$$
 (17)

 $\hat{\mathbf{f}}$  can thus be found by applying Bayes' rule to the posterior distribution over the training variables,

 $p(\mathbf{f}|\mathbf{X}, \mathbf{y}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})/p(\mathbf{y}|\mathbf{X})$ . Discard  $p(\mathbf{y}|\mathbf{X})$  as maximising  $\mathbf{f}$ . Take log and differentiate  $p(\mathbf{f}|\mathbf{X}, \mathbf{y})$  to get predictive mean:

$$\mathbb{E}_{q}[\mathbf{f}_{*}|\mathbf{X},\mathbf{y},\mathbf{x}_{*}] = K_{X*}^{\mathsf{T}} \nabla \log p(\mathbf{y}|\mathbf{\hat{f}}).$$
(18)



#### **Derivation of Variance**

Define predictive variance as:

$$\mathbb{V}_{q}[\mathbf{f}_{*}|\mathbf{X},\mathbf{y},\mathbf{x}_{*}] = K_{*} - K_{X*}^{\mathsf{T}}(K_{X} + W^{-1})^{-1}K_{X*}, \qquad (19)$$

using  $W \triangleq -\nabla \nabla \log(p(\mathbf{y}|\mathbf{f}))$ . Defining the symmetric positive definite matrix **B** as  $\mathbf{B} = I + W^{\frac{1}{2}} K_X W^{\frac{1}{2}}$ ,  $\mathbf{L} \mathbf{L}^{\intercal} = \mathbf{B}$  so  $\mathbf{L} = \text{cholesky}(\mathbf{B})$ , and  $\mathbf{v} = L \setminus (W^{\frac{1}{2}} K_{X*})$  simplify to:

$$\mathbb{V}_{\boldsymbol{q}}[\mathbf{f}_*|\mathbf{X},\mathbf{y},\mathbf{x}_*] = \mathcal{K}_* - \mathcal{K}_{X*}^{\mathsf{T}} \mathcal{W}^{\frac{1}{2}} (\mathcal{L}\mathcal{L}^{\mathsf{T}})^{-1} \mathcal{W}^{\frac{1}{2}} \mathcal{K}_{X*}$$
 (20)  
 
$$\mathbb{V}_{\boldsymbol{q}}[\mathbf{f}_*|\mathbf{X},\mathbf{y},\mathbf{x}_*] = \mathcal{K}_* - \mathbf{v}^{\mathsf{T}} \mathbf{v}$$
 (21)

Posterior term in  $\pi$  (5) now approximated as a Gaussian  $q(f_*|\mathbf{X}, \mathbf{y}, \mathbf{x}_*)$  with mean  $\mathbb{E}$  and variance  $\mathbb{V}$ .



The solution of the division involving the lower triangular matrix L on line 4 requires too much memory to obtain any benefit from performing the calculation on a GPU. In our experiments it proved to be faster to execute this on the CPU; the memory limitations on the GPU meant that the test covariance matrix  $K_{X*}$  had to be partitioned into very small batches, because of the large size of  $K_X$ .

