GPU-Accelerated Gaussian Processes for Object Detection

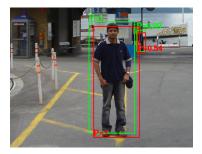
Calum Blair*, John Thompson*, Neil Robertson† *Institute for Digital Communications, University of Edinburgh †Institute for Sensors, Signals and Systems, Heriot-Watt University

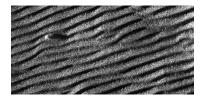
> SSPD 2015 9th September 2015

Contents

- Introduction & Motivation
- Method
 - Related Work
 - Gaussian Processes and Inference
 - GPU Acceleration
- Results
- Summary

Motivation





Pedestrian or object detection in images with realistic confidence measures†

†Blair, Thompson, Robertson, Introspective Classification for Pedestrian Detection, SSPD 2014

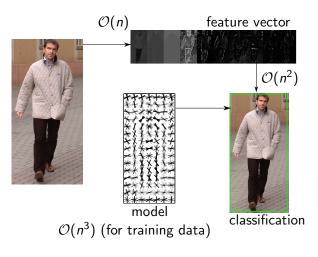
Object detection in Sonar (SAS) imagery*

*Blair, Thompson, Robertson, *Identifying Anomalous Objects in SAS Imagery Using Uncertainty*, Fusion 2015

Goals

Reliable and fast object detection: use Gaussian Processes as complete or final-stage classifier. Use support vector machines **(SVMs)** as baseline. GPU acceleration needed.

Classification Algorithm Structure



Gaussian process Classifiers (GPCs)

Given training data **X** and matching labels $\mathbf{y} \in \{0, 1\}$, do parameter learning. Perform probabilistic prediction $p(y = +1|\mathbf{x}_*)$ of new data sample \mathbf{x}_* .

Stage 1: define latent functions f(x) as Gaussian distribution: $\mathcal{N}(\mu(x), k(\mathbf{X}, \mathbf{x}_*))$. Covariance function k can be linear:

$$k(x_i, x_j) = \sigma \mathbf{x_i} \cdot \mathbf{x_j}.$$
 (1)

or squared-error:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \sigma \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_j)^2}{2\ell^2}\right).$$
 (2)

where σ , ℓ learned during training.

Classifier algorithm

Estimate distribution of f_* which best fits \mathbf{x}_* :

$$p(f_*|\mathbf{X},\mathbf{y},\mathbf{x}_*) = \int p(f_*|\mathbf{X},\mathbf{x}_*,\mathbf{f}) p(\mathbf{f}|\mathbf{X},\mathbf{y}) d\mathbf{f}.$$
 (3)

given **f** is the distribution of the latent function over **X**. **Stage 2**: 'squash' f_* using sigmoid with output range [0, 1]:

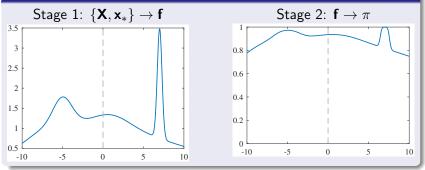
$$\sigma(x) = \frac{1}{(1 + \exp(-f(x)))}.$$
 (4)

Final class membership probability π :

$$\pi \triangleq p(y = +1 | \mathbf{X}, \mathbf{y}, \mathbf{x}_*) = \int \sigma(f_*) p(f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_*) df_* .$$
 (5)

training process is $\mathcal{O}(n^3)$, while testing is $\mathcal{O}(n^2)$.

Graphical Interpretation



Baseline Algorithm

Support Vector Machine Comparison

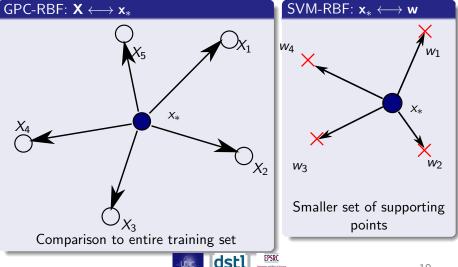
Test equation:

$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i K(\mathbf{x}, \mathbf{w}_i) + b$$
(6)

 α , **w** and *b* learned during training. Use radial basis function (RBF) kernel: same as (2) above.

Difference with GPCs: ${\bm w}$ is condensed model of training data, but ${\bm X}$ is all samples seen.

Graphical Interpretation



Accelerating Matrix Computations

LAPACK (Linear Algebra Package) standard library. Uses **BLAS** (Basic Linear Algebra Subprograms): vector, matrix and vector-matrix algorithms for multiplication and linear equations.

Highly optimised versions (tweak order of operations and cache contents), available for **Intel x86** (MKL, gotoBLAS, ...) and NVIDIA CUDA **GPU** (cuBLAS, MAGMA, nvBLAS).

MATLAB/ Numpy etc. make BLAS calls: $C = AB \rightarrow$

 $C = \operatorname{sgemm}(A, B)$

single-precision, general matrix-matrix multiply

BLAS Limitations

Must reformulate high-level operations to match available subroutines:

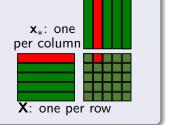
$$\exp\left(-\frac{(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{j}})^2}{2\ell^2}\right) \tag{7}$$

expands to:

$$(\mathbf{x}_i - \mathbf{x}_j)^2 = \mathbf{x}_i^2 + \mathbf{x}_j^2 - 2\mathbf{x}_i\mathbf{x}_j.$$
(8)

3 separate calls, 3 separate data accesses: problem when A, B are $\rightarrow 1GB$. GPU model: limited memory, latency dominates. Here, **X** (training samples) is huge.

Now describe modification of GPC algorithm.



Inference

Goal: find π in (5) via predictive mean $\mathbb{E}[\mathbf{f}_*|\mathbf{X}, \mathbf{y}, \mathbf{x}_*]$ and predictive variance $\mathbb{V}[\mathbf{f}_*|\mathbf{X}, \mathbf{y}, \mathbf{x}_*]^{\dagger}$.

Training and test covariances form part of larger matrix:

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathcal{K}(\mathbf{X}, \mathbf{X}) & \mathcal{K}(\mathbf{X}, \mathbf{x}_*) \\ \mathcal{K}(\mathbf{x}_*, \mathbf{X}) & \mathcal{K}(\mathbf{x}_*, \mathbf{x}_*) \end{bmatrix} \right)$$
(9)

$$K(\mathbf{X}, \mathbf{X})$$
 $K(\mathbf{X}, \mathbf{x}_*)$ $K(\mathbf{x}_*, \mathbf{X})$ $K(\mathbf{x}_*, \mathbf{x}_*)$

Define K_X as $K(\mathbf{X}, \mathbf{X})$, K_{X*} as $K(\mathbf{X}, \mathbf{x}_*)$ and K_* as $K(\mathbf{x}_*, \mathbf{x}_*)$. Write a conditional Gaussian on (9) as:

$$\mathbf{f}_*|\mathbf{X},\mathbf{x}_*,\mathbf{f}\sim\mathcal{N}(\mathcal{K}(\mathbf{x}_*,\mathbf{X})\mathcal{K}_X^{-1}\mathbf{f},\mathcal{K}_*-\mathcal{K}(\mathbf{x}_*,\mathbf{X})\mathcal{K}_X^{-1},\mathcal{K}_{X*}) \quad (10)$$

Now have one term in f_* -expression. †Ch.3, Rasmussen & Williams, Gaussian Processes for Machine Learning (2006).

Abridged Maths

Approximate posterior term with a Gaussian and:

$$p(\mathbf{f}|\mathbf{X},\mathbf{y}) \approx q(\mathbf{f}|\mathbf{X},\mathbf{y}) = \mathcal{N}(\mathbf{\hat{f}},A^{-1})$$
 (11)

Obtain predictive mean as:

$$\mathbb{E}_{q}[\mathbf{f}_{*}|\mathbf{X},\mathbf{y},\mathbf{x}_{*}] = \mathcal{K}_{X*}^{\mathsf{T}} \nabla \log p(\mathbf{y}|\mathbf{\hat{f}}).$$
(12)

Define predictive variance as:

$$\mathbb{V}_{q}[\mathbf{f}_{*}|\mathbf{X},\mathbf{y},\mathbf{x}_{*}] = K_{*} - K_{X*}^{\mathsf{T}}(K_{X} + W^{-1})^{-1}K_{X*}, \quad (13)$$

Using $W \triangleq -\nabla \nabla \log(p(\mathbf{y}|\mathbf{f}))$, $\mathbf{L} = \text{cholesky}(I + W^{\frac{1}{2}}K_XW^{\frac{1}{2}})$, and $\mathbf{v} = \mathbf{L} \setminus (W^{\frac{1}{2}}K_{X*})$, simplify to:

$$\mathbb{V}_{q}[\mathbf{f}_{*}|\mathbf{X},\mathbf{y},\mathbf{x}_{*}] = \mathcal{K}_{*} - \mathbf{v}^{\mathsf{T}}\mathbf{v}$$
(14)

See paper for complete derivations

Probabilistic Prediction: Full algorithm

Require:
$$\mathbf{X}, \mathbf{x}_*, \mathbf{y}, \mathbf{\hat{f}}, W, L$$
, kernel function $k(x_i, x_j)$
1: $K_{X*} = K(\mathbf{X}, \mathbf{x}_*) \blacktriangleright$
2: $K_* = K(\mathbf{x}_*, \mathbf{x}_*) \blacktriangleright$
3: $\mathbb{E}_q[f_*|X, \mathbf{y}, \mathbf{x}_*] = K_{X*}^{\mathsf{T}} \nabla \log(p(\mathbf{y}|\mathbf{\hat{f}})) //$ latent mean
4: $\mathbf{v} = L \setminus (W^{\frac{1}{2}} K_{X*}) \blacktriangleright$
5: $\mathbb{V}_q[f_*|X, \mathbf{y}, \mathbf{x}_*] = K_* - \mathbf{v}^{\mathsf{T}} \mathbf{v} //$ latent variance
6: $\bar{\pi}_* = \int \sigma(z) \mathcal{N}(z | \mathbb{E}_q[f_*], \mathbb{V}_q[f_*]) dz //$ prediction
7: return $\bar{\pi}$

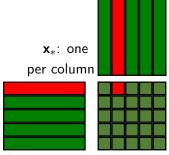
Figure: Calculate π at test time. Compute-heavy lines marked with \blacktriangleright .

$$K(\mathbf{X}, \mathbf{X})$$
 $K(\mathbf{X}, \mathbf{x}_*)$ $K(\mathbf{x}_*, \mathbf{X})$ $K(\mathbf{x}_*, \mathbf{x}_*)$

Optimisation

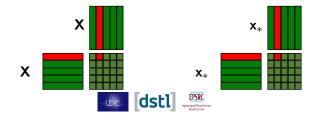
Each sample has $d\sim$ 5000. Same block-level data reused for \sim 100 sliding windows in image.

Optimised Matrix Multiplication



X: one per row

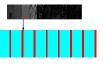
C = AB: load tiles of A and Binto fast memory. (Existing work optimised tile sizes via automated parameter exploration.) For K_{X*} and K_X , $A = \mathbf{X}$; usual matrix structure, one sample per row, no overlap.



Improvements

When *B* is \mathbf{x}_* : densely packed; instead of one row per window, re-use nearby data already in fast shared memory.

Time to access A and C (the resulting K_{X*} matrix) dominates. Big reductions in time & memory consumption. Further improvements from instruction level parallelism. **x**_{*}: stride over packed data



X: one per row

Results

- Timing: test processing speed on single image
- Accuracy: test on large dataset

Timing

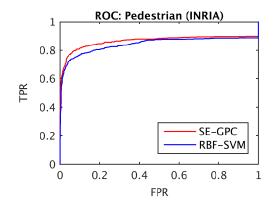
Algorithm	Processor	Implementation	Time(s)	Speedup
GPC	CPU	MATLAB BLAS	10.28	
GPC	GPU	GPGPGPU	2.77	3.7×
SVM	CPU	LIBSVM	66.92	
SVM	GPU	cuSVM	1.74	38.5 imes

Matrix multiplication stage for 640×480 image on CPU (12-core Intel Xeon X5650, 2.67GHz) and GPU (NVIDIA GeForce GTX 680, 1536 cores, 2GB RAM).

cuSVM implementation is faster as SVM needs fewer support vectors (\sim 3000 vs \sim 14000 GPC training vectors).

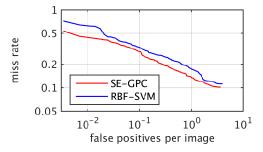
Intro Method Results Summary

Receiver Operating Characteristic



Intro Method Results Summary

Detection Error Tradeoff



Reliability Diagram

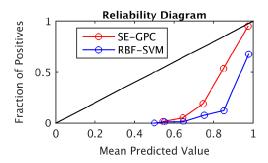


Figure: GPC and SVM Reliability; classifiers closer to black line are more reliable.

Conclusion

GPC compared to baseline SVM: similar speed but gain in reliability.

Best case is 3.7 \times speedup compared to an optimised implementation on CPU.

Improvements usually possible even over heavily optimised initial code, when matched to application.

Code available for download[†].

Questions?

thttp://homepages.ed.ac.uk/cblair2/

Appendix

Require: X, y, f, kernel function $k(x_i, x_j)$ 1: $\hat{\mathbf{f}} \triangleq \mathbb{E}_q[\mathbf{f}, \mathbf{X}, \mathbf{y}] = \operatorname{argmax}_{\mathbf{f}} p(\mathbf{f} | \mathbf{X}, \mathbf{y}) // \text{Using Newton's method}$ 2: $K_X = K(\mathbf{X}, \mathbf{X})$ 3: $W = -\nabla \nabla \log(p(\mathbf{y} | \hat{\mathbf{f}}))$ 4: $L = \operatorname{cholesky}(I + W^{\frac{1}{2}}KW^{\frac{1}{2}})$ 5: return $W, L, \hat{\mathbf{f}}, K_X$

Figure: Prepare training posterior. This only needs to be done once and can be re-used during testing.

Bibliography

Derivation of Mean

Laplacian approximation: treat posterior over the training data and labels in our f_* term (3) as a Gaussian:

$$p(\mathbf{f}|\mathbf{X},\mathbf{y}) \approx q(\mathbf{f}|\mathbf{X},\mathbf{y}) = \mathcal{N}(\mathbf{\hat{f}},A^{-1}),$$
 (15)

where

$$\hat{\mathbf{f}} = \arg \max_{\mathbf{f}} \rho(\mathbf{f} | \mathbf{X}, \mathbf{y}), \qquad (16)$$

and (where ∇ represents differentiation):

$$A = -\nabla \nabla \log(\rho(\mathbf{f}|\mathbf{X}, \mathbf{y})|_{\mathbf{f}=\hat{\mathbf{f}}}.$$
 (17)

 $\hat{\mathbf{f}}$ can thus be found by applying Bayes' rule to the posterior distribution over the training variables,

 $p(\mathbf{f}|\mathbf{X}, \mathbf{y}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})/p(\mathbf{y}|\mathbf{X})$. Discard $p(\mathbf{y}|\mathbf{X})$ as maximising \mathbf{f} . Take log and differentiate $p(\mathbf{f}|\mathbf{X}, \mathbf{y})$ to get predictive mean:

$$\mathbb{E}_{q}[\mathbf{f}_{*}|\mathbf{X},\mathbf{y},\mathbf{x}_{*}] = K_{X*}^{\mathsf{T}} \nabla \log p(\mathbf{y}|\mathbf{\hat{f}}).$$
(18)

Derivation of Variance

Define predictive variance as:

$$\mathbb{V}_{q}[\mathbf{f}_{*}|\mathbf{X},\mathbf{y},\mathbf{x}_{*}] = K_{*} - K_{X*}^{\mathsf{T}}(K_{X} + W^{-1})^{-1}K_{X*}, \qquad (19)$$

using $W \triangleq -\nabla \nabla \log(p(\mathbf{y}|\mathbf{f}))$. Defining the symmetric positive definite matrix **B** as $\mathbf{B} = I + W^{\frac{1}{2}} K_X W^{\frac{1}{2}}$, $\mathbf{L} \mathbf{L}^{\intercal} = \mathbf{B}$ so $\mathbf{L} = \text{cholesky}(\mathbf{B})$, and $\mathbf{v} = L \setminus (W^{\frac{1}{2}} K_{X*})$ simplify to:

$$\mathbb{V}_{\boldsymbol{q}}[\mathbf{f}_*|\mathbf{X},\mathbf{y},\mathbf{x}_*] = \mathcal{K}_* - \mathcal{K}_{X*}^{\mathsf{T}} \mathcal{W}^{\frac{1}{2}} (\mathcal{L}\mathcal{L}^{\mathsf{T}})^{-1} \mathcal{W}^{\frac{1}{2}} \mathcal{K}_{X*}$$
 (20)

$$\mathbb{V}_{\boldsymbol{q}}[\mathbf{f}_*|\mathbf{X},\mathbf{y},\mathbf{x}_*] = \mathcal{K}_* - \mathbf{v}^{\mathsf{T}} \mathbf{v}$$
 (21)

Posterior term in π (5) now approximated as a Gaussian $q(f_*|\mathbf{X}, \mathbf{y}, \mathbf{x}_*)$ with mean \mathbb{E} and variance \mathbb{V} .

The solution of the division involving the lower triangular matrix L on line 4 requires too much memory to obtain any benefit from performing the calculation on a GPU. In our experiments it proved to be faster to execute this on the CPU; the memory limitations on the GPU meant that the test covariance matrix K_{X*} had to be partitioned into very small batches, because of the large size of K_X .

