

Research Council

Wideband CDMA waveforms for large MIMO sonar systems

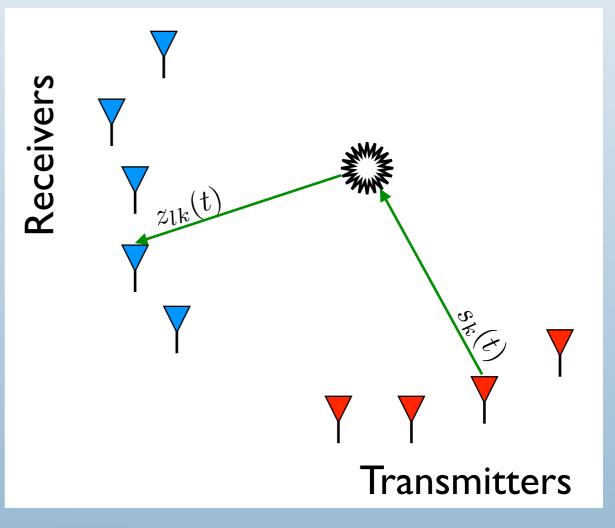
Yan Pailhas, Yvan Petillot

Heriot-Watt University, Ocean Systems Lab. Edinburgh Research Partnership in Signal and Image Processing

MIMO Systems

MIMO: Multiple Input Multiple Output

- Develop the theoretical framework for MIMO sonars
- Understand the target response from MIMO systems
- Fuse the multiple signals given by MIMO systems



MIMO Systems

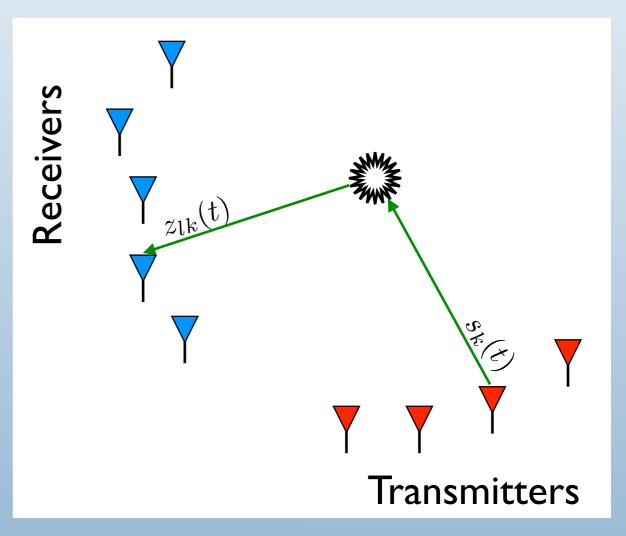
MIMO: Multiple Input Multiple Output

Pros:

- N x M views
- angular diversity
- bistatic views

Cons:

- complexity
- synchronisation



Overview

- MIMO sonar model
- MIMO sonar characteristics
 - ATR
 - Super resolution
 - Independent views problem
- Orthogonal Waveforms
 - TDMA
 - FDMA
 - CDMA

MIMO sonar model

We developed previously a MIMO sonar model:

$$Z_{lk}(\omega) = H_{lk}(X_0, \omega) F_{\infty}(\omega, \theta_l, \phi_k) S_k(\omega)$$

 Z_{lk} is the response of the target at the receiver l from the transmitter k. H_{lk} is the propagation function. X_0 is the target centre of gravity. F_{∞} is the target form function. θ_l and ϕ_k are the target view angles from respectively receiver l and transmitter k. S_k is the pulse send by transmitter k.

The full response is given by:

$$R_l(\omega) = \sum_{k=1}^{K} Z_{lk}(\omega)$$

MIMO sonar model

The target response from the MIMO pair (l,k) is then given by:

 $X_{lk}(\omega) = R_l(\omega)S_k^*(\omega)$ = $H_{lk}(X_0, \omega)F_{\infty}(\omega, \theta_l, \phi_k)$

Here we assume the orthogonality of waveforms:

$$S_m(\omega)S_k^*(\omega) = \mathbb{1}_{m,k}(\omega)$$

In the time domain and assuming cloud point target model, we have:

$$\left| \left| \sum_{q=1}^{Q} h_{lk}^{(q)} \right|^2 \right|^2$$

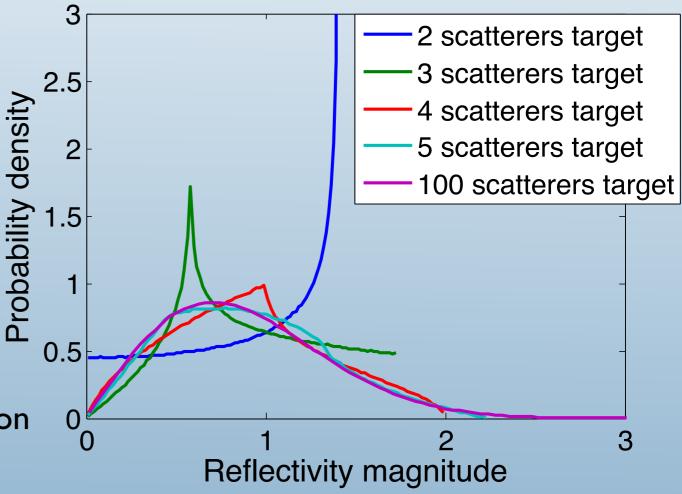
Target recognition with MIMO systems

Study of the convergence speed of

 $\sqrt{\left|\sum_{q=1}^{Q} h_{lk}^{(q)}\right|^2}$

Low number scatterer targets have distinguishable PDF.

With only 5 scatterers the reflectivity magnitude of the target presents a distribution very close to the Rayleigh distribution.



Target recognition with MIMO systems

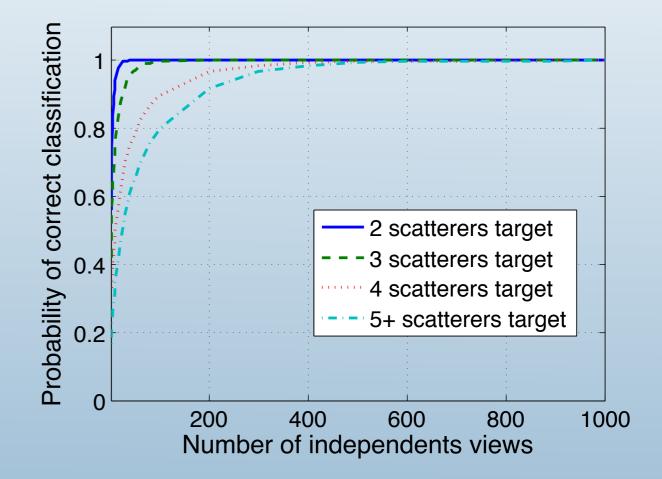
Assuming independent views we can write:

$$P(X|Q_n) = \prod_{i=1}^p P(x_i|Q_n)$$

and then we can derive from Bayes rules:

$$P(Q_n|X) = \frac{\prod_{i=1}^p P(x_i|Q_n)}{\sum_{n=1}^M P(X|Q_n)}$$

number of views	correct classification
10	64%
50	86%
100	92%
200	97%
500	99.81%
1000	>99.999999 %



Correct classification probability against the number of independent views for 4 classes of targets (2, 3, 4 and 5+ scattering points targets).

Speckle resolution

20.2 19.8

19.9

20

X Range (in metres)

SAS image

20.1

20.2

Computing the average target intensity, we can derive the detection rule:

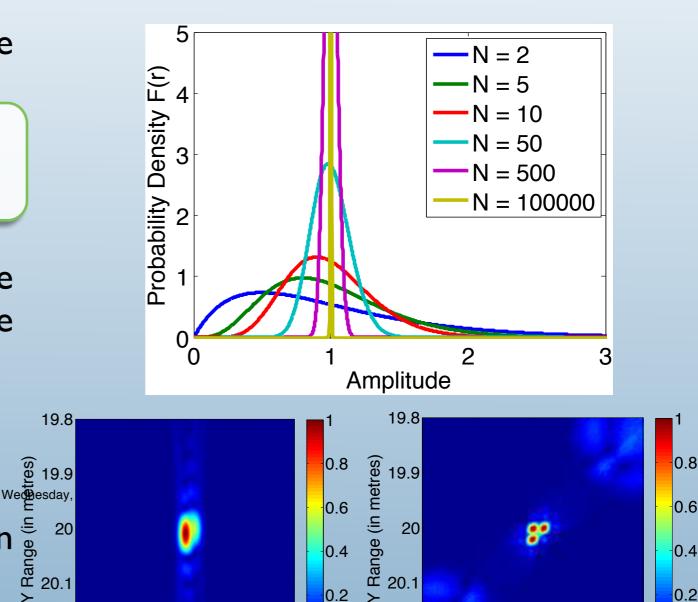
$$\mathcal{F}(\mathbf{r}) = \sum_{l,k} ||x_{lk}||^2 \sim \frac{1}{N} \sum_{n=1}^{N} \text{Rayleigh}^2(\sigma)$$

Assuming independent views and using the properties of the Rayleigh distribution, we can write:

$$\frac{1}{N} \sum_{n=1}^{N} \text{Rayleigh}^2(\sigma) \sim N\Gamma(N, 2\sigma^2)$$

The asymptotic behaviour of the detection ⁵/₉₆²⁰ rule is then:

$$\lim_{N \to +\infty} \mathcal{F}(r) = \lim_{N \to +\infty} N\Gamma(N, 2\sigma^2) = \delta_1$$



20.2

19.9

20

X Range (in metres)

MIMO image

20.1

20.2

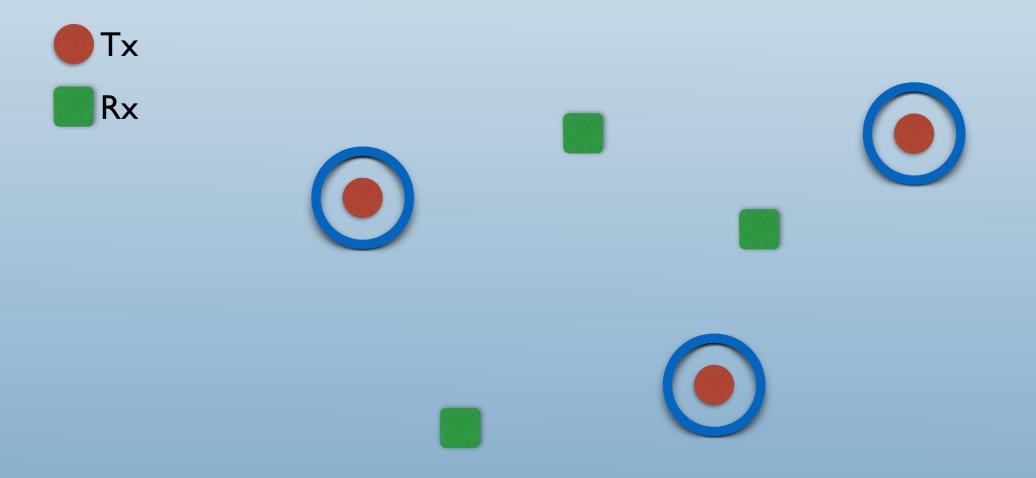
One condition:

$$\int_{-\infty}^{+\infty} s_i(\tau) s_j^*(t-\tau) d\tau = \delta_{i,j}$$

MIMO waveform strategies

TDMA Time Division Multiple Access

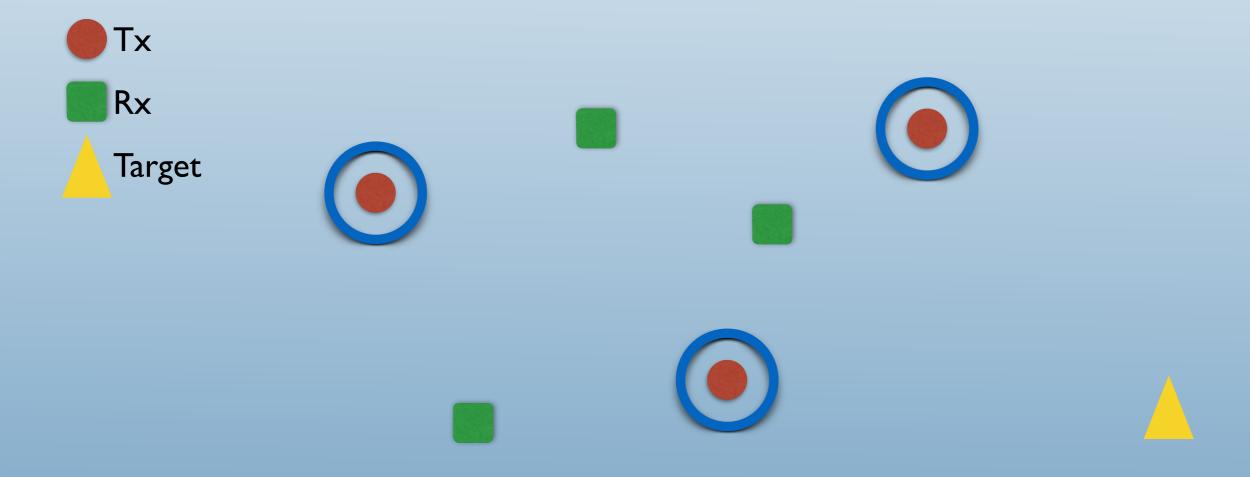
It refers to waveform sets sharing the same frequency band but not at the same time.



TDMA Time Division Multiple Access

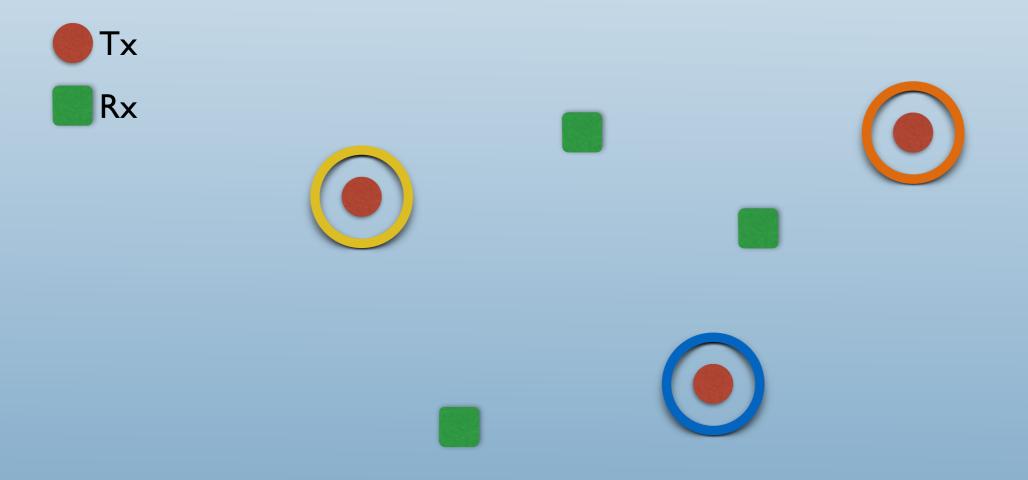
Intrinsic problem of TDMA:

PRI (pulse repetition interval) relative the dynamic of the scene



FDMA Frequency Division Multiple Access

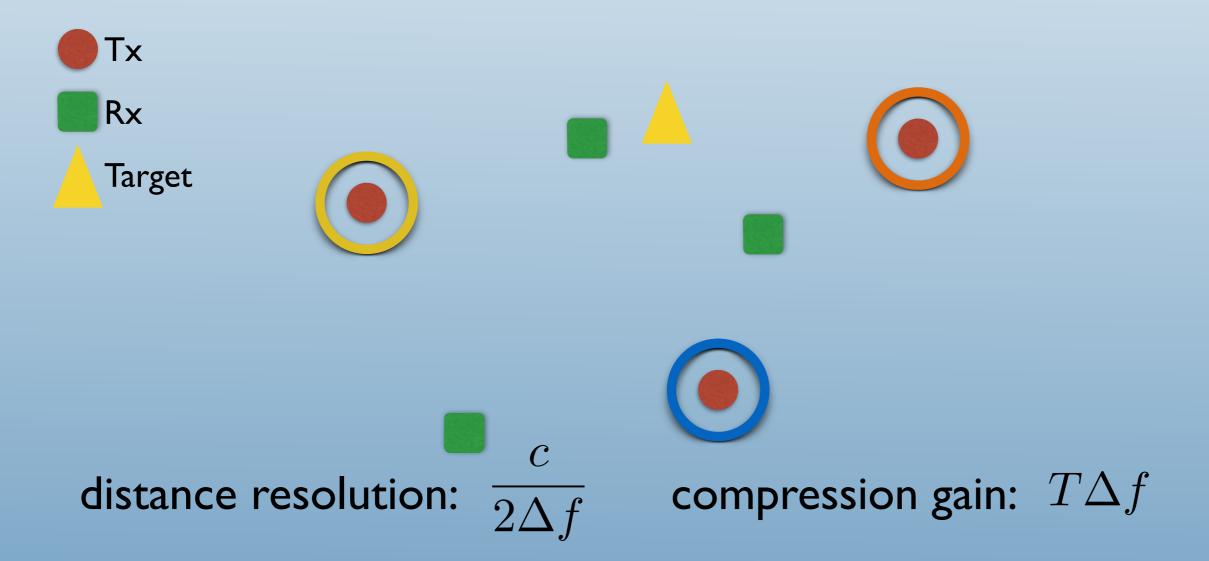
It refers to waveform sets occupying different frequency bands at the same time.



FDMA Frequency Division Multiple Access

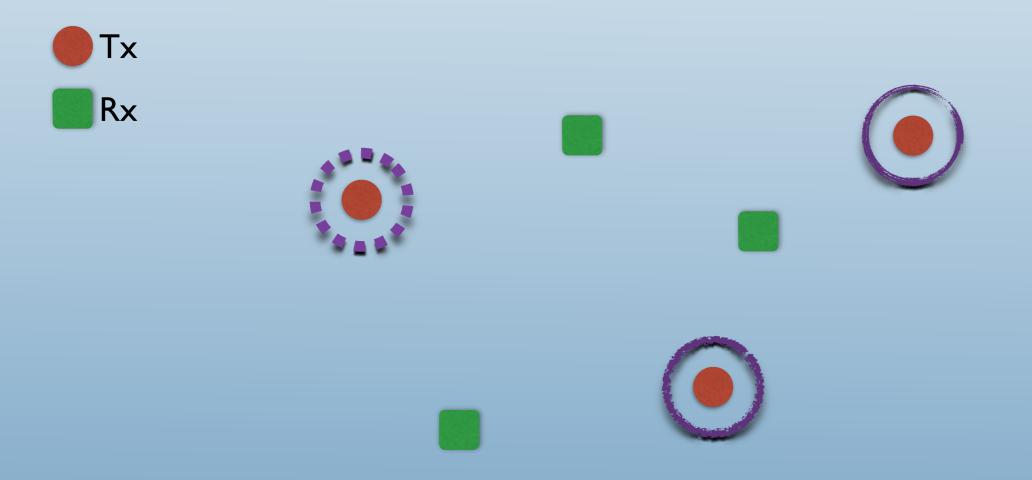
Intrinsic problem of FDMA:

Dividing the full bandwidth by the number of transmitters.



CDMA Code Division Multiple Access

It refers to waveform sets sharing the same frequency band at the same time.



CDMA Code Division Multiple Access

Diverse CDMA waveforms were proposed for radar including:

- polyphase code
- pseudo random phase code
- up/down chirps
- Baker, Gold code
- ...

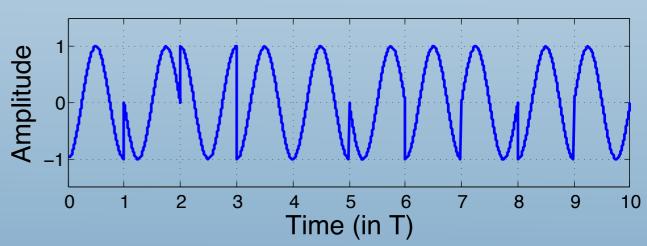
Optimisation criteria:

- sidelobe levels
- cross correlation

Constraints:

- constant amplitude

Polyphase waveform



Interlaced Micro-Chirp Series

<u>CDMA requirements for wideband large MIMO sonar systems:</u>

- I. wideband width covered by every pulses
- 2. "good" auto- and cross-correlation functions
- 3. possibility to generate a large number of orthogonal waveforms
- 4. waveforms with smooth phase transition
- 5. waveforms with relative constant amplitude

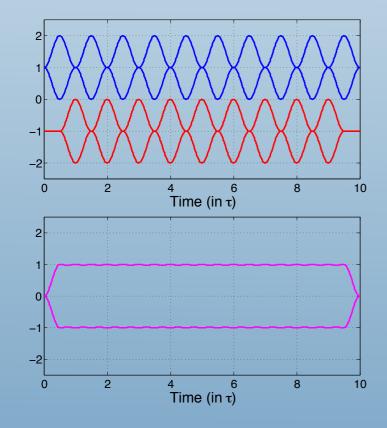
Relaxed condition relative to radar:

constant amplitude waveform

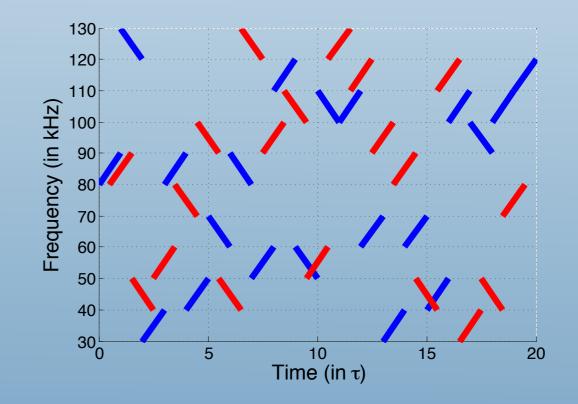
Interlaced Micro-Chirp Series

The IMCS waveform is the summation of two concatenations of micro-chirps series. Each micro-chirp has the same duration τ and the same windowing.

- smooth phase transition between each consecutive micro-chirp
- relatively constant amplitude for the overall waveform
- constrains the micro-chirp to a constant bandwidth



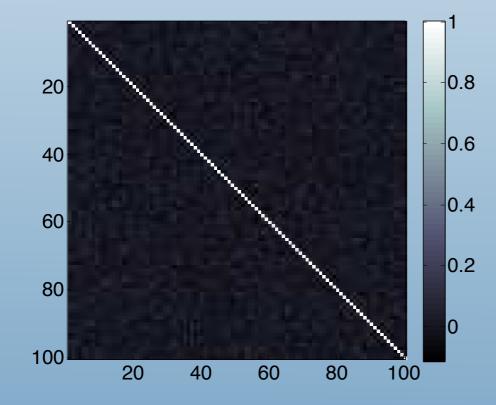
IMCS time-frequency structure



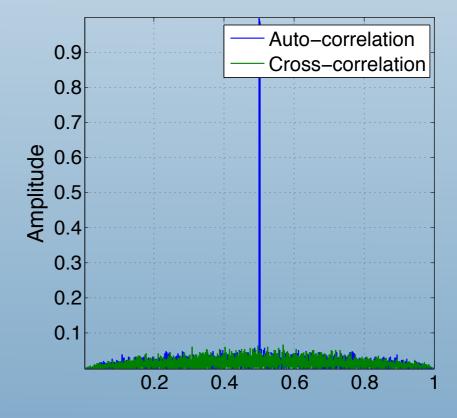
Interlaced Micro-Chirp Series

We computed 100 different waveforms for B = [30 kHz - 130 kHz], $\tau = 10^{-4}$ s, N_B = 10, N $\tau = 90$.

Covariance matrix



Auto and cross correlation



- Importance of orthogonal waveforms for MIMO systems
- Orthogonal waveform strategy
- IMCS for large MIMO sonar systems