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MIMO Systems
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MIMO: Multiple Input Multiple Output

Develop the theoretical framework for 

MIMO sonars

Understand the target response from MIMO 

systems

Fuse the multiple signals given by MIMO 

systems
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MIMO Systems
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N x M views

angular diversity

bistatic views

Cons:

complexity

synchronisation

Pros:

MIMO: Multiple Input Multiple Output
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Overview

• MIMO sonar model

• MIMO sonar characteristics
• ATR

• Super resolution

• Independent views problem

• Orthogonal Waveforms
• TDMA

• FDMA

• CDMA

• IMCS
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MIMO sonar model

We developed previously a MIMO sonar model:

Zlk(!) = Hlk(X0,!)F1(!, ✓l,�k)Sk(!)

Zlk is the response of the target at the receiver l from the transmitter k. 
Hlk is the propagation function. X0 is the target centre of gravity. 
F∞ is the target form function. θl and ϕk are the target view angles from 
respectively receiver l and transmitter k.
Sk is the pulse send by transmitter k.
The full response is given by:

Rl(!) =
KX

k=1

Zlk(!)
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Xlk(!) = Rl(!)S
⇤
k(!)

= Hlk(X0,!)F1(!, ✓l,�k)

Sm(!)S⇤
k(!) = 1m,k(!)

MIMO sonar model

The target response from the MIMO pair (l,k) is then given by:

Here we assume the orthogonality of waveforms:

In the time domain and assuming cloud point target model, we have:vuuut
�����

QX

q=1

h(q)
lk

�����

2
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Target recognition with MIMO systems
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Study of the convergence speed of

Low number scatterer targets have 
distinguishable PDF. 

With only 5 scatterers the reflectivity 
magnitude of the target presents a distribution 
very close to the Rayleigh distribution.
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3 scatterers target
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number of views correct classification

10 64%

50 86%

100 92%

200 97%

500 99.81%

1000 >99.999999 %

Target recognition with MIMO systems

Correct classification probability against 
the number of independent views for 4 
classes of targets (2, 3, 4 and 5+ scattering 
points targets).

P(Qn|X) =

Qp
i=1 P(xi|Qn)PM
n=1 P(X|Qn)

P(X|Qn) =
pY

i=1

P(xi|Qn)

Assuming independent views we can write:

and then we can derive from Bayes rules:
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Speckle resolution
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Computing the average target intensity, we 
can derive the detection rule:

F(r) =
X

l,k

||xlk||2 ⇠ 1

N

NX

n=1

Rayleigh2(�)

Assuming independent views and using the 
properties of the Rayleigh distribution, we 
can write:

1

N

NX

n=1

Rayleigh2(�) ⇠ N�(N, 2�2)

The asymptotic behaviour of the detection 
rule is then:

lim
N!+1

F(r) = lim
N!+1

N�(N, 2�2) = �1 X Range (in metres)
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One condition:

Z +1

�1
si(⌧)s

⇤
j (t� ⌧)d⌧ = �i,j
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MIMO waveform 
strategies
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TDMA
Time Division Multiple Access

It refers to waveform sets sharing the same frequency band 
but not at the same time.

Tx

Rx
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TDMA
Time Division Multiple Access

Intrinsic problem of TDMA:  

PRI (pulse repetition interval) relative the dynamic of the scene

Tx

Rx

Target
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FDMA
Frequency Division Multiple Access

Tx

Rx

It refers to waveform sets occupying different frequency 
bands at the same time.
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FDMA
Frequency Division Multiple Access

Intrinsic problem of FDMA:  

Dividing the full bandwidth by the number of  transmitters.

Tx

Rx

Target

c

2�f
T�fdistance resolution: compression gain:
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CDMA
Code Division Multiple Access

Tx

Rx

It refers to waveform sets sharing the same frequency 
band at the same time.
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CDMA
Code Division Multiple Access
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Polyphase waveform

Diverse CDMA waveforms were proposed for radar including:
- polyphase code
- pseudo random phase code
- up/down chirps
- Baker, Gold code
- …

Optimisation criteria:
- sidelobe levels
- cross correlation

Constraints:
- constant amplitude
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Interlaced Micro-Chirp Series

CDMA requirements for wideband large MIMO sonar systems: 

1. wideband width covered by every pulses

2. “good” auto- and cross-correlation functions

3. possibility to generate a large number of orthogonal waveforms

4. waveforms with smooth phase transition

5. waveforms with relative constant amplitude

Relaxed condition relative to radar: 

constant amplitude waveform
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Interlaced Micro-Chirp Series
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The IMCS waveform is the summation of two concatenations of micro-chirps series. 
Each micro-chirp has the same duration τ and the same windowing.

 - smooth phase transition between each consecutive micro-chirp

 - relatively constant amplitude for the overall waveform 

 - constrains the micro-chirp to a constant bandwidth 

IMCS µ-chirp structure IMCS time-frequency structure
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Interlaced Micro-Chirp Series
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We computed 100 different waveforms for 

B = [30 kHz - 130 kHz],  τ = 10−4s, NB = 10 , Nτ = 90.
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Conclusions

• Importance of orthogonal waveforms for 
MIMO systems

• Orthogonal waveform strategy

• IMCS for large MIMO sonar systems


