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Introduction

CBR defence: protective measures against a

chemical (C)
biological (B)
radiological (R)

attack.

CBR defence covers a fairly broad spectrum of measures;
multi-disciplinary scientific effort

This talk will focus on signal processing techniques applied to recent
and ongoing projects within the Land Division of DST group
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Overview

1 Localisation of a source of biochemical agent release

2 Autonomous search techniques for CBR sources

3 Image reconstruction for a standoff gamma radiation detector

4 Forecasting of an epidemic outbreak

5 Extinction of biological systems with competition
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Localisation of a biochemical source: Context

Deliberate or accidental release of toxic
material (gas, aerosols) into the
atmosphere

Problem: Given the readings supplied by a
network of spatially distributed
biochemical sensors, estimate the location
of the source

Technical difficulties:

source strength unknown;
characteristics of sensor
measurements not well understood
(plethora of air dispersion models;
likelihood function only a guess)
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Localisation of a biochemical source: Problem formulation

Parametric approach - parameter vector θ includes

Source location (x0, y0, z0), strength Q0 (possibly size)
Enviro/meteo parameters
e.g. wind speed, direction, canopy characteristics

Concentration measurements at spatially distributed sensor locations
zi ≥ 0, i = 1, . . . , S

Mean concentration at sensor i: E{zi} = hi(θ)
... based on the adopted dispersion model
Random fluctuations (capture both the dispersion modelling errors and
measurement noise)
Possibly quantised

Bayesian estimation framework

p(θ|z1, . . . , zS)︸ ︷︷ ︸
posterior PDF

∝ `(z1, . . . , zS |θ)︸ ︷︷ ︸
likelihood function

· π(θ)︸︷︷︸
prior PDF

Signal Processing for CBR defence 6 / 49



Dispersion plume videos

Due to turbulence:

meandering of the plume

intermittent measurements

(video)

(diffusion)

(video)

(diffusion + advection)

Two categories of transport of substances in the environment

Advection - transport with the mean fluid flow

Diffusion - transport through the action of random motions
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Robust localisation of a biochemical source

Previous approaches:

Adopt a dispersion model (which determines hi(θ))
Adopt a certain model of random measurement fluctuations (Gaussian,
log-normal)
Use Markov chain Monte Carlo (MCMC) to approximate the posterior
p(θ|z1, . . . , zS)

Proposed framework2:

Adopt several candidate dispersion models: M = {1, . . . ,M}
Likelihood-free estimation
Use approximate Bayesian computation (ABC) to simultaneously
estimate p(m|z1, . . . , zS) and p(θm|m, z1, . . . , zS)

2
Ref: B. Ristic et al. ‘Bayesian likelihood-free localisation of a biochemical source using multiple dispersion models’, Signal

Processing, 2015
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Multiple-model ABC rejection sampler

Priors:

πM(m) ... prior PDF over dispersion models m = 1, 2, . . . ,M

πθm(θm) ... prior PDF over the parameter space for model m

1: Input: z = [z1, . . . , zS ]ᵀ; ε; N
2: Initialise: X1 = · · · = XM = ∅
3: repeat
4: Draw m∗ from πM(m)
5: Draw θ∗m from πθm∗ (θm)
6: Simulate measurement z∗ using model m∗ and parameter θ∗m
7: Compute distance d∗ = D(z, z∗)
8: if d∗ ≤ ε then
9: Xm∗ = Xm∗ ∪ {θ∗m}

10: end if
11: until

∑M
m=1 |Xm| = N

12: Output: X1, · · · ,XM

p(m|z) ≈ |Xm|
N

; p(θm|m, z) approximated by the sample Xm
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Iterative Adaptive Multiple-model ABC sampler

Rejection sampling is inefficient (very low acceptance rate)

We developed a more efficient scheme: rejection sampling is applied using a
sequence of monotonically decreasing tolerance levels
ε1 > ε2 > · · · > εT > 0;

The subsequent approximations gradually approach the true posterior

Similar to the SMC-ABC sampler (Toni et al., 2009), but no need to specify
in advance tolerances ε1, . . . , εT ; instead, iteration t computes the tolerance
for the next iteration, εt+1
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Dispersion models

M = 3 models considered:

m = 1: Gaussian plume with a linear spread, dim(θ1) = 7
m = 2: Gaussian plume with a nonlinear spread, dim(θ2) = 9
m = 3: Stretch exponential model, dim(θ3) = 10

Gaussian plume model

Gaussian distribution of the plume in the vertical and horizontal
directions.
By convention, x-axis coincides with the average wind velocity vector
Mean concentration at sensor i

Ci = hi(θ) =
Q0

2πσyiσziU
e
− (yi−y0)2

2σ2
yi

[
e
− (zi−z0)2

2σ2
zi + e

− (zi+z0)2

2σ2
zi

]

with σyi = σv
U (xi − x0), σzi = σw

U (xi − x0) for m = 1 (point source)
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Experimental dataset for algorithm evaluation

Collected using a recirculating water channel
(COANDA R&D Corp),
10m × 1.5m × 0.9m

The source: constant release of fluorescent
dye from a narrow tube

Concentration measurements collected at
S = 48 downstream positions using laser
induced fluorescence (LIF); averaged over 100
sec

The floor of the w/c covered with a mesh to
give surface roughness

Two scenarios considered:

without obstacles (open terrain);
with obstacles (urban environment)
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Experimental dataset: Results (1)

Top-down view of the experimental setup

Localisation at iterations t = 1, 4, 7, 10
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Experimental dataset: Results (2)

Top-down view of the experimental setup

Localisation at iterations t = 3, 6, 9, 12
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Localisation of a biochemical source: CR bounds (1)

Assuming:

Gaussian plume dispersion model

Additive white Gaussian measurement noise

Derived the theoretical Cramer-Rao lower bounds for estimation3 of θ

analog measurements: zi = hi(θ) + wi,

binary measurements: bi =

{
1, zi > τ

0, zi ≤ τ
, i = 1, . . . , S

analog Localisation information binary

3
Ref: B. Ristic et al., ”Achievable accuracy in Gaussian plume parameter estimation ...”, Information Fusion, 2015.
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Localisation of a biochemical source: CR bounds (2)

Two (uniform) placements of sensors:

1 S = 36

2 S = 171
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Localisation of a biochemical source: binary measurements

Problem:

Identical spatially distributed binary sensors

Binary threshold τ is unknown (vague prior)

Semiurban environment

Question: Can we localise the source (estimate θ) in this case (since the source
strength Q0 is also unknown)?

Answer: Yes, replace Q0 (in θ) with Q0/τ .
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Localisation using experimental binary data (1)

State vector: θ = [x0 y0 Q0/τ U ]ᵀ

Dispersion model: the count of particle encounters in 2D (Vergassola et al,
Nature, 2007)

Likelihood function for the measurement vector b = [b1, . . . , bS ]ᵀ derived
assuming that zi is Poisson distributed

Prior distributions:
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Localisation using experimental binary data (2)

Posterior distributions4

Estimation carried out using the importance sampling technique

Similar results obtained for three experimental datasets

4
Ref: B. Ristic et al. ‘Source Localisation in turbulent flow using a binary sensor network’, IEEE SPL (in review), 2015
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Autonomous search vs Localisation

Consider sensors that can be controlled, e.g.

where to go
how long to stay

Search is a repetitive cycle of sensing, estimation (localisation), and sensor
control

Decisions (controls, actions) are made sequentially and autonomously (AI) in
the presence of uncertainty, using only past measurements and past actions.

Goal: minimise the search time via on-line control of individual sensors (need

to define in advance the termination criterion)
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Search Research

Search strategies for finding a source of an emission (gas, particles, smell,
energy) based on sparse cues are of great importance

National security (e.g. release of hazardous substances)
Recovery & rescue emissions (e.g. MH370)

Understanding nature (foraging behaviour of animals)

Very popular subject; huge amount of literature (top journals); various
scientific disciplines (e.g. biology, physics, operations research, robotics)

Categories:

Deterministic (systematic search) vs random search
Random search models: diffusion, Lévy flight, intermittent search
(exploration vs exploitation)
Gradient search (chemotaxis) vs information driven search (infotaxis)
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Sequential decisions under uncertainty

“Partially observed Markov decision problem” formulation

The elements of POMDP:

A set of admissible actions (controls) at discrete-time k: Uk;

The (information) state of the system at time k: Ik
A reward function associated with each action u ∈ Uk: R

(
u, Ik

)
The best action should be based on the reward computed a few steps ahead.

One step ahead optimal sensor control:

uk = arg max
v∈Uk

[R(v, Ik)]
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Bayesian - Information Theoretic Approach

The (information) state of the system is the posterior PDF:

Ik = p(θ|z1:k,u0:k−1), (z1:k ≡ z1, z2, . . . , zk)

Sequential Bayesian estimation; particle filter implementation

Reward function: an information theoretic measure, e.g.

Entropy difference: R = E{Hk+1(u, Ik+1)}−Hk(Ik)

where Hk(Ik) = −
∫
p(θ|z1:k,u0:k−1) ln p(θ|z1:k,u0:k−1)dθ

Rényi divergence

R = E
{

1

α− 1
log

∫
[p(θ|z1:k+1,u0:k)]α[p(θ|z1:k,u0:k−1)]1−αdθ

}
(α = 1 ⇒ Kullback-Liebler div.; α = 0.5 ⇒ Bhattacharyya dist. )
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Autonomous search: demo

Turbulent diffusion

Real (COANDA) data

(video)
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Autonomous search demo: Explanation

Likelihood function: Poisson distribution

Dispersion model: the count of particle encounters in 2D (Vergassola et al.,
Nature, 2007); the mean of the Poisson distribution at sensor i

Ci = hi(θ) =
Q0

ln
(
λ
a

) exp

[
(x0 − xi)U

2D

]
·K0

(√
(xi − x0)2 + (yi − y0)2

λ

)

where λ =
√

(DTo)/(1 + U2To
4D ),

a - size of the sensor; D - diffusivity; T0 - mean lifetime of a particle; U -
mean wind speed

The reward function: Entropy difference
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Autonomous search: study5

All information theoretic based reward functions perform similarly.

An important factor in search performance is the ratio ρ = Asearch
Asense .

The smaller ρ, the more efficient

information driven search strategy

(infotaxis) is compared to the systematic

search (and vice versa)

5
B. Ristic et al., A study of cognitive strategies for an autonomous search using sparse cues, Information Fusion, 2015
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The PDF of search time (1)

Let the reward function be the entropy difference.

Postulation: Dynamic model of entropy

during the search is a Gauss-Markov

random walk with a constant (negative)

drift.

Brownian motion (as a continuous-time limiting case of a Gauss-Markov random

walk) has the following property:

Distribution of the “first passage time”

The time which Brownian motion Xt = νt+ σWt, with a drift ν < 0, takes to

reach a certain (negative) level, is an inverse Gaussian RV
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The PDF of search time (2)

QQ plots of 4 samples of search time

(varying U and Q0)
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Autonomous search for radiological point sources6

Sensor: low-cost, non-directional
(Geiger counter)

Unknown number of sources R ≥ 0;
unknown intensities

Control vectors:
where to go, how long to stay

Propagation model:
inverse distance squared

Ci = hi(θ) =

R∑
r=1

Q
(r)
0[

xi − x(r)
0

]2
+
[
yi − y(r)

0

]2
Likelihood function:
Poisson, i.e. zi ∼ P(hi(θ) + β)

Top down view of the data

experimental set-up

6
B. Ristic et al., Information driven search for point sources of gamma radiation, Signal Processing, 2010
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Autonomous search for radiological point sources (cont’d)

(video)
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Autonomous search in an unknown structured environment

Context7:

A diffusive source of toxic substance (gas, particles)
Search domain contains obstacles
GPS denied environment; the map is unknown
The initial position and the search domain boundary are given

Goal: Estimate the source location and the path to it!

Assumption: The searcher can sense

1 the concentration (of toxic substance)

2 the presence / absence of obstacles

7
B. Ristic et al., Autonomous search for a diffusive source in an unknown structured environment, Entropy, 2014

Signal Processing for CBR defence 32 / 49



Discretisation of the search area

Complete lattice
(known a priori)

Blah

Incomplete lattice (unknown)
(obstacles are missing links, ∼ 35%)

(percolation threshold)
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Search in an unknown structured environment: demo (1)

The correct likelihood function depends on the map - because the map is
unknown, the searcher uses an approximation derived using the conformal
mapping technique

Execution of motion controls prone to error (with prob pe � 1)

The state vector θ includes:

1 Coordinates (x0, y0), intensity of the source Q0

2 The map (i.e. existence of all links in the lattice)
3 The searcher position on the map

Admissible actions: Uk = {·,→,←, ↑, ↓}

Reward function: Bhattacharyya distance (over x0, y0, Q0 only)
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Search - unknown structured environment: demo (2)

(video)
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Autonomous search in an unknown structured environment

Examples on a bigger scale
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Gamma radiation image reconstruction8

DSTO recently built a prototype of a
standoff imaging gamma radiation
detector

Purpose: determine exact locations of
radiological sources within the field of
view

Rotational modulation collimation

Two attenuating masks separated by
a known distance
Co-rotating on a cylinder in front of
three gamma ray detectors

Problem: Reconstruct the image from its
RMC projection

8
Ristic, Roberts, “A parametric Bayesian RMC gamma-ray image reconstruction”, ICASSP 2015
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RMC image reconstruction: parametric vs non-parametric

Non-parametric formulation

Emission tomography (reconstruction of medical images)
Standard algorithms: EM, MAP

Measurements: yi ∼ Pyi

 N∑
j=1

Aijλj

 , (rot. angles i = 1, . . . ,M)

Goal: reconstruct image λ = [λ1, . . . , λN ]ᵀ using y = [y1, . . . , yM ]ᵀ

Parametric formulation

Motivation: limited projections ; simpler images
Image: a weighted sum of Gaussian radial basis functions:

λj(θ) =

Q∑
k=1

λjk(θ), where λjk(θ) = wke
−

(xj−x̄k)2+(yj−ȳk)2

σ2
k

Goal: reconstruct the image by estimating the 4Q-dimensional
parameter vector θ = [wᵀ x̄ᵀ ȳᵀ σᵀ]ᵀ
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Bayesian parametric RMC image reconstruction

Bayesian parameter estimation framework:
π(θ|y) ∝ p(y|θ)π0(θ)

Implementation: importance sampling
with progressive correction and
Metropolis-Hastings step

The proposed method works much better
for extended (non-point) sources

Work in progress: model selection for
unknown Q; fast estimation(to deal with
large Q, e.g. non-homogeneous
background radiation)

Point source (Cs-137), distance 260m

True EM Proposed
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Dynamics of infectious disease

Epidemic:

a complex dynamic stochastic system

on the macroscopic level: compartmental models of disease transmission

Example: SEIR (compartmental) model (measles, pox, influenza, ...)

(ignoring birth, migration, death by natural causes)

Ṡ = −βIS/N
Ė = βIS/N − αE
İ = αE − γI
R = N − (S + E + I)
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Sequential Epidemic State Estimation (and Prediction)

Nonlinear (stochastic) filtering framework

Stochastic SEIR model: Gillespie algorithm, approximations

Sk = Sk−1 − νk, νk ∼ P(βIk−1Sk−1∆/N)

Ek = Ek−1 + νk − µk, µk ∼ B(Ek−1, e
−∆α)

Ik = Ik−1 + µk − ηk, ηk ∼ B(Ik−1, e
−∆γ)

Measurements

Cumulative number of infected cases (e.g. Ebola)

Syndromic surveillance (e.g. flu - number of Google searches)

Implementation: particle filter9

9
Skvortsov, Ristic, “Monitoring and prediction of an epidemic outbreak”, Math. Biosciences, 2012
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Application: Ebola virus epidemic in west Africa

WHO data (available online)

Likelihood function unknown: Neg-Binomial vs Poisson

Sierra Leone, 95 days prediction Guinea, 97 days prediction

10

10
Ristic, Dawson, “Forecasting an Epidemic Outbreak: Application to Ebola Cases”, Signal Processing (in review), 2015
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Extinction and survival in a competitive world

Central themes of population biology

Relevant in a broader context of complex stochastic dynamic systems
(e.g. virus evolution, stock market trading)

Mathematical model:
single-prey multiple-predator Lotka-Volterra (LV-1n) system

- prey population (food for predators): x
- competing predators: y1, . . . , yn

ẋ = αx

(
1−

n∑
i=1

βi yi

)
ẏi = βi x yi − γi yi

α, β1, γ1, . . . , βn, γn > 0

Deterministic model - no extinction!
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PDF of extinction time for a stochastic LV-1n

2n+ 1 biochemical reactions:

X
α→ 2X

X + Yi
βi→ 2Yi i = 1, . . . , n

Yi
γi→ ∅ i = 1, . . . , n

Master eq. ⇒ exact simulation algorithm

(Gillespie)

We are after the PDF of extinction time T

Simplification: competing predators collapse into one aggregated predator y
(parameters β, γ)

Analytic expression for the PDF of T̃ = T/τ is then known (Kamenev,
Parker, 2009)

p(T̃ ) =
a√
πT̃ 3

exp
[
− (T̃ − a)2/T̃

]
where: τ is a (known) function of x(0), y(0), α, β and γ; a ≈ 0.5
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PDF of extinction time: example

Suppose we observe occasionally, over a period of time, the prey count of an
LV-1n system11(N.B. n can be unknown!)

Assuming:

an aggregated stochastic LV-11 model

Poisson likelihood of prey count measurements

we can estimate x(0), y(0), α, β and γ (e.g. using the pMCMC algorithm),
find τ and the PDF of T

11
Ristic, Skvortsov, “Predicting extinction of a biological system with competition”, Chapter 25 in Emerging Trends in

Computational Biology, Bioinformatics, and Systems Biology, 2015
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Summary and future work

Review signal processing techniques applied to a few recent and ongoing
CBR defence projects in Land Division of DSTO

Future work:

Practical: build autonomous search robots

Theoretical: distributed multi-platform search (estimation, control),

intermittent search strategies, parameter estimation of large stochastic

reaction networks (system biology: signaling pathways)

Questions ???
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