

Radar Imaging With Quantized Measurements Based on

Compressed Sensing

Xiao Dong and Yunhua Zhang

Key Laboratory of Microwave Remote Sensing,

Chinese Academy of Sciences

Center for Space Sciences and Applied Research, **Chinese Academy of Sciences**

Motivation

High-resolution radar imaging requires high-rate analog-to-digital converter (ADC), but

- the dynamic range of ADC degrades as a function of the sampling rate, and
- the large volumes of data produced by high-rate ADC raise the

Basic Radar Observation Model U \equiv S *e* measurement matrix target reflectivity additive noise received radar data Complex-valued vectors or matrices

 $\mathcal{R}\left\{\cdot\right\}$ - real part operator $\mathcal{I}\left\{\cdot\right\}$ - imaginary part operator

burden of storing and transmission devices.

Radar Imaging With Low-bit Quantized Data

Advantage Enable high-rate ADC; Reduce the amount of data for storage and transmission.

Disadvantage

Large quantization error; Reduce the dynamic range of radar image.

One possible solution: Quantized Compressed Sensing (QCS)

QCS Radar Imaging

Classic CS Radar Imaging Objective: reconstruct *x* from y = Ax + n**Method**: l_1 -regularization

min $\frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda \sum_{i=N}^{N} [x_{i}^{2} + x_{i+N}^{2}]^{1/2}$

$$\mathbf{y} = \begin{bmatrix} \mathcal{R}\{\mathbf{s}\} \\ \mathcal{I}\{\mathbf{s}\} \end{bmatrix}, \ \mathbf{A} = \begin{bmatrix} \mathcal{R}\{\mathbf{U}\} & -\mathcal{I}\{\mathbf{U}\} \\ \mathcal{I}\{\mathbf{U}\} & \mathcal{R}\{\mathbf{U}\} \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} \mathcal{R}\{\mathbf{f}\} \\ \mathcal{I}\{\mathbf{f}\} \end{bmatrix}, \ \mathbf{n} = \begin{bmatrix} \mathcal{R}\{\mathbf{e}\} \\ \mathcal{I}\{\mathbf{e}\} \end{bmatrix}$$

y = Ax + nReal-valued vectors or matrices

Let *Q* denote the quantizer function:

1-bit (\square : false targets)

 $\boldsymbol{q} = Q(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{n})$

Let *l* and *u* denote the lower and upper thresholds associated with q, respectively.

 $l \leq Ax + n \leq u$

Simulation

i=1**QCS Radar Imaging Objective:** reconstruct *x* from $l \leq Ax + n \leq u$ Method: maximum *a posteriori* (MAP) estimation $\min -\ln p(\boldsymbol{q}|\boldsymbol{x}) - \ln p(\boldsymbol{x})$ **Two assumptions:** n_i are iid Gaussian random variables $p(\boldsymbol{q}|\boldsymbol{x}) = \prod_{i=1}^{2M} \left| \Phi\left(\frac{-\boldsymbol{a}_i^T \boldsymbol{x} + \boldsymbol{u}_i}{\sigma}\right) - \Phi\left(\frac{-\boldsymbol{a}_i^T \boldsymbol{x} + \boldsymbol{l}_i}{\sigma}\right) \right|$ Φ is the cumulative distribution function (CDF) of the standard normal distribution.

The target reflectivity vector is sparse. The l_1 -norm can be used to enforce the sparsity.

$$-\ln p(\mathbf{x}) \propto \left\| \mathbf{f} \right\|_{1} = \sum_{i=1}^{N} \sqrt{\mathbf{x}_{i}^{2} + \mathbf{x}_{i+N}^{2}}$$

 $\min - \sum \ln |\Phi|$

a convex, unconstrained optimization problem

 $\left(\frac{-\boldsymbol{a}_{i}^{T}\boldsymbol{x}+\boldsymbol{u}_{i}}{\sigma}\right)-\Phi\left(\frac{-\boldsymbol{a}_{i}^{T}\boldsymbol{x}+\boldsymbol{l}_{i}}{\sigma}\right)\left|+\lambda\sum_{i=1}^{N}\sqrt{\boldsymbol{x}_{i}^{2}+\boldsymbol{x}_{i+N}^{2}}\right|$

For coarsely quantized data like 1-bit and 2-bti quantization, the proposed method outperforms l_1 -regularization. For high-resolution quantization,

$$-\ln p(\boldsymbol{q}|\boldsymbol{x}) \approx \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \text{Constant}$$

Thus the proposed method and l_1 -regularization are approximately equivalent.