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In this paper, an improved cubature rule
based filter has been proposed for solving
the nonlinear filtering problems. The in-
tractable integral appeared while solving
the nonlinear filtering problems is decom-
posed into the surface and the line inte-
grals. The surface integral is solved by us-
ing the arbitrary odd degree spherical cu-
bature rule and the line integral is solved
with any order Gauss-Laguerre quadrature
rule. The proposed filter is named as Im-
proved high-degree cubature Kalman filter
(IHDCKF).

ABSTRACT

• A nonlinear system is represented as
state model xk+1 = φ(xk)+ηk (1)

measurement model yk = γ(xk)+vk (2)
where xk ∈ ℜn and yk ∈ ℜp are the state
and the measurement respectively at kth in-
stant i.e. k ∈ {0,1,2,3, ...,N}, φ(xk) and
γ(xk) are known nonlinear functions of xk,
ηk ∈ ℜn and vk ∈ ℜp are white noises and
normally distributed with zero mean and
covariances Qk and Rk respectively.

• In last decade, the cubature Kalman filter
(CKF) [1] was most demanded due to its
high accuracy at low computational load.

• In CKF, the intractable integrals are de-
composed into the spherical and the line
integrals. The spherical integral is ap-
proximated using 3rd-degree spherical rule
while the line integral is computed using
first order radial rule.

• The accuracy of CKF is further en-
hanced in cubature quadrature Kalman fil-
ter (CQKF) [2] and the high-degree cuba-
ture Kalman filter (HDCKF) [3]. In CQKF,
the line integral could be solved by using
arbitrary order Gauss-Laguerre quadrature
rule while the HDCKF approximates the
spherical integral by using the arbitrary or-
der spherical cubature rule.

• In the proposed Improved high-degree cu-
bature Kalman filter (IHDCKF), the spher-
ical integral is computed by using the ar-
bitrary order spherical cubature rule while
the line integral is approximated by using
the arbitrary order Gauss-Laguerre quadra-
ture.

INTRODUCTION

Theorem 1 For any arbitrary function
f (X), X ∈ℜn the integral of interest

I( f )=
1√

|Σ|(2π)n

∫
ℜn

f (X)e−
1
2 (X−µ)T Σ−1(X−µ)dX

can be decomposed into two integrals as

I( f ) =
1√
(2π)n

∫
∞

r=0

∫
Un

[ f (CrZ +µ)

dσ(Z)]rn−1e−r2/2dr

(3)

INTEGRAL DECOMPOSITION

where X =CrZ+µ , C is Cholesky decom-
position of covariance matrix Σ, ‖ Z ‖= 1,
µ is the mean of Gaussian distribution and
Un is the surface of an unit hyper-sphere.
The proof is given in [3]. �
For 0 mean and unity covariance system,
the spherical integral is

∫
Un

f (rZ)dσ(Z).
This integral is solved using arbitrary odd
degree spherical cubature rule.

Theorem 2 [3] For arbitrary but odd
degree spherical cubature rul, the sur-
face integral of the form IUn( frZ) =∫

Un
f (rZ)dσ(Z) could be evaluated as

IUn,2m+1( frZ) = ∑
|p|

wp f
{

rup
}

(4)

where IUn,(2m+1)( frZ) represents spherical
integration of the function f (rZ) with
(2m+ 1)th degree spherical cubature rule
i.e. m∈ Z+, rup and wp are cubature points
and corresponding weights given by{

rup
}
,
⋃
(β1rup1 ,β2rup2 , · · · ,βnrupn)

wp , 2−nz(up)

(
IUn

(
n

∏
i=1

pi−1

∏
j=0

z2
i −u2

j

u2
pi
−u2

j

))
where p is a set of non-negative num-
bers i.e. p = [p1, p2, ..., pn], and |p| =
p1 + p2 + ...+ pn; up is also a set of non-
negative numbers (not necessarily an inte-
ger); nz(up) gives the number of non-zero
elements in up; βi =±1 and upi =

√
pi/m.

The proof is provided in [3].

HIGH DEGREE CUBATURE RULE

Any integral of the form∫
∞

λ=0 f (λ )λ α e−λ dλ can be approxi-
mated using quadrature points and weights
associated with them. The quadrature
points can be determined from the roots of
n′ order Chebyshev-Laguerre polynomial

Lα

n′(λ ) = (−1)n′
λ
−α eλ dn′

dλ n′ λ
α+n′e−λ = 0

If the quadrature points are λi′ , then
the weights can be computed as ωi′ =
n′!Γ(α + n′+ 1)/λi′ [L̇α

n′(λi′)]
2 and the in-

tegral could be approximated as∫
∞

λ=0
f (λ )λ α e−λ dλ ≈

n′

∑
i′=1

ωi′ f (λi′) (5)

GAUSS-LAGUERRE QUADRATURE RULE

Theorem 3 The integral I( f ) can be ap-
proximated as

I( f ) =
1

2
√

πn

n′

∑
i′=1

ωi′

[
∑
|p|

wp f
{√

2λi′up

}]
Proof: Considering zero mean and unity
covariance, the above integral becomes

I( f )=
1√

(2π)n

∫
∞

r=0

∫
Un

[ f (rZ)dσ(Z)]rn−1e−
r2
2 dr

HIGH-DEGREE CUBATURE QUADRATURE RULE

Substituting equation (4) and substituting
t = r2/2, we get

I( f )=
1

2
√

πn

∫
∞

t=0
∑
|p|

wp f
{√

2tup

}
t

n
2−1e−tdt

After substituting α = n/2−1, the Gauss-
Laguerre quadrature rule could be applied
to solve the above integral. For i′ number
of quadrature points denoted as λi′ the in-
tegral becomes

I( f )=
1

2
√

πn

n′

∑
i′=1

ωi′

[
∑
|p|

wp f
{√

2λi′up

}]
�

The proposed filter has been applied to
estimate the states of a nonlinear system
for which φ(xk) = 20cos(xk) and γ(xk) =√

1+ xT
k xk. The initial truth states are con-

sidered as x0 = 0.1×0n×1. The filter is ini-
tialized with a value of x̂0 and P0, where
x̂0 = 0n×1 and P0 = In. The error covari-
ance matrices are given as Q = In and R =
1.

Figure 1: RMSE plot over 100 steps of 1st

state of a six dimesional system for 500
Monte-Carlo runs

SIMULATION RESULTS

• The quadrature filters viz. GHF and SGHF
are applied to solve a constant turn rate ma-
neuvering target tracking problem.

• Quadrature filters show higher accuracy
than its counterparts UKF, CKF.

• SGHF could reduce the curse of di-
mensionality problem drastically, appeared
with GHF [1].
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