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ABSTRACT

In this paper, an improved cubature rule
based filter has been proposed for solving
the nonlinear filtering problems. The 1n-
tractable integral appeared while solving
the nonlinear filtering problems 1s decom-
posed into the surface and the line inte-

grals. The surface integral 1s solved by us-
ing the arbitrary odd degree spherical cu-
bature rule and the line integral 1s solved
with any order Gauss-Laguerre quadrature
rule. The proposed filter 1s named as Im-

proved high-degree cubature Kalman filter
(IHDCKEF).

INTRODUCTION

A nonlinear system 1s represented as
= ¢ (x) + Mk (1)

measurement model  y, = y(x;) +vi (2)
where x;, € R" and y, € RP are the state
and the measurement respectively at k" in-
stant i.e. k € {0,1,2,3,....N}, ¢(x;) and
¥(xz) are known nonlinear functions of x,
Nx € R" and v, € RP are white noises and
normally distributed with zero mean and
covariances QO and Rj respectively.

In last decade, the cubature Kalman filter
(CKF) [1] was most demanded due to 1ts
high accuracy at low computational load.
In CKF, the intractable integrals are de-
composed into the spherical and the line
integrals. The spherical integral 1s ap-
proximated using 3’“-degree spherical rule
while the line integral 1s computed using
first order radial rule.

The accuracy of CKF 1s further en-
hanced 1n cubature quadrature Kalman fil-
ter (CQKF) [2] and the high-degree cuba-
ture Kalman filter (HDCKEF) [3]. In CQKEF,
the line integral could be solved by using
arbitrary order Gauss-Laguerre quadrature
rule while the HDCKF approximates the
spherical integral by using the arbitrary or-
der spherical cubature rule.

In the proposed Improved high-degree cu-
bature Kalman filter (IHDCKF), the spher-
ical integral 1s computed by using the ar-
bitrary order spherical cubature rule while
the line integral 1s approximated by using
the arbitrary order Gauss-Laguerre quadra-
ture.

state model Xk

INTEGRAL DECOMPOSITION

Theorem 1 For any arbitrary function
f(X), X € R" the integral of interest

\/(Z\ 27)" /f

can be decamposed into two integrals as
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where X = CrZ+ 1, C 1s Cholesky decom-

U 1s the mean of Gaussian distribution and
U, 1s the surface of an unit hyper-sphere.
The proof 1s given 1n [3].

For 0 mean and unity covariance system,
the spherical integral is [, f(rZ)do(Z).
This integral 1s solved using arbitrary odd
degree spherical cubature rule.

HIGH DEGREE CUBATURE RULE

Theorem 2 [3] For arbitrary but odd
degree spherical cubature rul, the sur-
face integral of the form Iy (f.z) =
Ju, f(rZ)do(Z) could be evaluated as

— prf{’””p} (4)

where Iy (2,,11)(frz) represents spherical
integration of the function f(rZ) with
(2m + 1), degree spherical cubature rule
i.e. m € Z7, ru, and w), are cubature points
and corresponding weights given by

{rup} = U(ﬁlrumvﬁﬂumv oy Barup,)
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where p 1s a set of non- negatlve num-
bers i.e. p = [p1,p2,.-,pn), and [p| =
p1+ p2+ ...+ pn; uy 1s also a set of non-
negative numbers (not necessarily an inte-
ger); n;(u,) gives the number of non-zero

IUn,Zm—I—l (frZ)

elements in u,; B; = +1 and u,, = \/p;/m.
The proof 1s prov1ded 1n [3].

GAUSS-LLAGUERRE QUADRATURE RULE

Any integral of the form
I3 o f(A)A%e=*dA can be approxi-
mated using quadrature points and weights
associated with them. The quadrature
points can be determined from the roots of
n' order Chebyshev-Laguerre polynomial

/ d"
LE(A)=(=1)" 2" %" -~
If the quadrature points are Ay, then
the weights can be computed as @y =
n'\T(ot+n' + 1)/Ay[L%(A7)]* and the in-
tegral could be approximated as

HIGH-DEGREE CUBATURE QUADRATURE RULE

Theorem 3 The integral I(f) can be ap-
proxlmated as

I(f) =

8
- Z
Proof: Con31der1ng zero mean and unity
covarlance the above integral becomes

/ o/ rZ dG
27r

e _Tdr

Substituting equation (4) and substituting
t =r*/2, we get

Z\ﬁ/ Oprf \Fup}tg Le~!dr

After subst1tut1ng o =n/2 — 1, the Gauss-

Laguerre quadrature rule could be applied
to solve the above integral. For i’ number
of quadrature points denoted as Ay the in-
tegral becomes

I(f) =

1
5 W igl ;/

SIMULATION RESULTS

The proposed filter has been applied to
estimate the states of a nonlinear system

for which ¢ (x;) = 20cos(x;) and y(x;) =

\/ | +x£xk. The 1nitial truth states are con-

sidered as xg = 0.1 X 0,,« 1. The filter 1s 1ni-
tialized with a value of Xy and F,, where
xo = 0,«x1 and Py = I,,. The error covari-

ance matrices are given as Q = I, and R =
1.
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Figure 1: RMSE plot over 100 steps of 1
state of a six dimesional system for 500
Monte-Carlo runs

DISCUSSIONS AND CONLUSIONS

The quadrature filters viz. GHF and SGHF
are applied to solve a constant turn rate ma-
neuvering target tracking problem.
Quadrature filters show higher accuracy
than its counterparts UKF, CKF.

SGHF could reduce the curse of di-

mensionality problem drastically, appeared
with GHF [1].
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