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Background
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◮ Cross spectral density

R(z) =
τ
∑

−τ
R[τ ]z−τ

is a polynomial matrix.

◮ Parahermitian
R̃ = RH(z−1) = R(z)

◮ Space-time covariance matrix:
R[τ ] = E

{

x[n]xH[n− τ ]
}

◮Matrix of auto- & cross-
correlation sequences

◮ Symmetry R[τ ] = RH[−τ ]
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◮ Approximate Polynomial EVD [1]: R(z) ≈ Q(z)D(z)Q̃(z)

Iterative PEVD Algorithms

Iterative PEVD algorithms consist of three major steps:

1. Determine the elements to be shifted onto the zero lag

2. Shift the appropriate row(s) and column(s) onto the zero lag

3. Transfer energy from the zero lag onto the diagonal

1. {k(i), τ (i)} = argmaxk,τ ‖ŝ
(i−1)
k [τ ]‖∞
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2. S(i)′(z) = Λ̃
(i)
(z)S(i−1)(z)Λ(i)(z)

0

3. S(i)
(z) = Q(i)HS(i)′

(z)Q(i)

◮ Second order sequential best rotation (SBR2) [1] step 3 done
using a Jacobi transformation applied to all lags.

◮The sequential matrix diagonalisation (SMD) [2] algorithm uses a
full EVD of the zero lag (applied to all lags) for step 3.

The product of these steps over I iterations provides the
paraunitary matrix:

Q(z) =
I
∏

i=1

Λ(i)(z)Q(i) . (1)

Truncation Methods

Two truncation approaches:

◮ Lag based trim (all rows truncated by the same amount) [3].

◮Our new row-shift truncation (rows truncated individually then
shifted) [4].

Results

Off-diagonal energy vs. paraunitary matrix order:
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SBR2 example:
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SMD example:
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Conclusions

Applying row-shift truncation to paraunitary matrices generated by
SBR2 and SMD give contrasting results. The order of paraunitary
matrices produced by SBR2 are significantly reduced by the new
truncation method whereas only a marginal benefit is obtained
from the SMD equivalent. Previously SMD has been favoured for
low order paraunitary matrices; here the SBR2 algorithm with
row-shift truncation can generate lower order paraunitary matrices.
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